
Orpheus: Efficient Distributed Machine Learning via System
and Algorithm Co-design

Pengtao Xie
Petuum Inc and Carnegie Mellon

University
Pittsburgh, PA

pengtao.xie@petuum.com

Jin Kyu Kim
Carnegie Mellon University

Pittsburgh, PA
jinkyuk@andrew.cmu.edu

Qirong Ho
Petuum Inc

Pittsburgh, PA
qirong.ho@petuum.com

Yaoliang Yu
University of Waterloo
Waterloo, ON, Canada

yaoliang.yu@uwaterloo.ca

Eric Xing
Petuum Inc

Pittsburgh, PA
eric.xing@petuum.com

ABSTRACT
Numerous existing works have shown that, key to the efficiency of
distributed machine learning (ML) is proper system and algorithm
co-design: system design should be tailored to the unique mathemat-
ical properties of ML algorithms, and algorithms can be re-designed
to better exploit the system architecture. While existing research
has made attempts along this direction, many algorithmic and sys-
tem properties that are characteristic of ML problems remain to be
explored. Through an exploration of system-algorithm co-design,
we build a new decentralized system Orpheus to support distributed
training of a general class of ML models whose parameters are
represented with large matrices. Training such models at scale is
challenging: transmitting and checkpointing large matrices incur
substantial network traffic and disk IO, which aggravates the incon-
sistency among parameter replicas. To cope with these challenges,
Orpheus jointly exploits system and algorithm designs which (1)
reduce the size and number of network messages for efficient com-
munication, 2) incrementally checkpoint vectors for light-weight
and fine-grained fault tolerance without blocking computation, 3)
improve the consistency among parameter copies via periodic cen-
tralized synchronization and parameter-replicas rotation. As a result
of these co-designs, communication and fault tolerance costs are lin-
ear to both matrix dimension and number of machines in the network,
as opposed to being quadratic in existing systems. And the improved
parameter consistency accelerates algorithmic convergence. Empir-
ically, we show our system outperforms several existing baseline
systems on training several representative large-scale ML models.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architectures;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC’18, October 11-13, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267810

KEYWORDS
Distributed machine learning, system algorithm co-design, sufficient
factor broadcasting, matrix-parameterized models

ACM Reference Format:
Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing. 2018.
Orpheus: Efficient Distributed Machine Learning via System and Algorithm
Co-design. In Proceedings of ACM Symposium of Cloud Computing confer-
ence, Carlsbad, CA, USA, October 11-13 (SoCC’18), 13 pages.
https://doi.org/10.1145/3267809.3267810

1 INTRODUCTION
Large-scale machine Learning (ML) is increasingly becoming in-
dispensable for applications such as speech recognition, machine
translation, image classification, online advertising. The growing
need of analyzing big data, and thereof training sophisticated models
such as deep neural networks [24], has led to the development of
several distributed ML systems [1, 12, 13, 17, 27, 37].

To execute ML algorithms efficiently on a distributed system, it
is important to perform system and algorithm co-design. On one
hand, ML algorithms possess unique properties such as iterativeness
and error tolerance [22], which can be leveraged to design efficient
systems. On the other hand, based on the features of the system such
as parallelism and (a)synchronicity, ML algorithms can be adjusted
for more efficient execution.

System and algorithm co-design has been explored in existing
distributed ML systems. Ho et al. [22] leveraged the error-tolerance
nature of ML algorithms to propose a new consistency model called
staleness synchronous parallel, which allows workers to proceed at
slightly different pace but still guarantees the correctness of execu-
tion. Kim et al. [23] proposed a structure-aware dynamic schedul-
ing approach inspired by the non-uniform convergence property of
model parameters and their dependency structure. Abadi et al. [1]
built a dataflow-graph based system that is tailored to the backpropa-
gation algorithm.

Our work falls into this line of research. Through a system and al-
gorithm co-design, we build the Orpheus system for training matrix-
parameterized models (MPMs), a general class of ML models which
include popular methods such as deep neural networks and topic
models [9], where the parameters are represented by matrices (but as
shown in [12, 38], the parameter-update matrices at each logical time

https://doi.org/10.1145/3267809.3267810
https://doi.org/10.1145/3267809.3267810

SoCC’18, October 11-13, Carlsbad, CA, USA Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing

(or clock) can be computed from much lighter-weight vectors re-
ferred to as sufficient vectors (SVs)). In large-scale MPMs, these ma-
trices can contain billions of elements. Existing systems [1, 11, 37]
communicate and checkpoint these matrices directly, which incur
substantial network traffic and disk IO, and compromise parameter-
replicas’ consistency.

1.1 Contributions
To address these challenges, we simultaneously exploit system de-
sign (SD) and algorithm design (AD) that leverage several mathe-
matical properties of the MPMs and their training techniques, and
thereupon develop an architecture that: (1) reduces communication
cost in terms of the amount of network traffic and the number of
communication messages; (2) saves disk bandwidth and reduces
IO waiting for checkpointing snapshots; and (3) reduces inconsis-
tency among parameter replicas. Most importantly, such savings are
achieved without compromising the mathematical equivalence of
the new ML solution to the original one.

In communication, on top of the peer-to-peer (P2P) architecture
for transfer of SVs [12, 38, 42], we contribute an AD – SV selection
and an SD – random multicast to further reduce the size of each net-
work message and the number of messages. In fault tolerance, based
on an AD – using SVs to represent parameter states, an SD – incre-
mental SV checkpoint (ISVC) – is used, which continuously saves
new SVs computed at each clock to stable storage. Compared with
checkpointing parameter matrices, ISVC reduces disk IO, avoids
compute-cycle waste and provides fine-grained (per-clock) rollbacks.
In consistency models, Orpheus uses SDs including periodic cen-
tralized synchronization and parameter-replicas rotation to mitigate
the incoherence among parameter replicas. In addition, we provide
an easy-to-use programming model where the generation of SVs is
automatically identified rather than being specified by users, which
reduces users’ programming efforts.

We evaluate Orpheus on three large scale applications and demon-
strate that our system is efficient and scalable.

Previous works [12, 38, 42] have explored the SVs for efficient
communication. Chilimbi et al. [12] proposed to reduce commu-
nication cost in parameter servers by transmitting SVs instead of
matrices from workers to the server. Xie et al. [38] designed a peer-
to-peer SV broadcasting framework. Two works [26, 38] proposed
to reduce the number of network messages in P2P frameworks by
replacing broadcasting with multicast. Our work is inspired by these
existing SV-based systems and makes the following new contribu-
tions: (1) leveraging SVs to reduce the costs of fault tolerance; (2)
new communication design – SV selection – for further reduction
of communication cost; (3) automatic identification of SVs; (4) new
protocols for alleviating the parameter-replica inconsistency resulted
from decentralized synchronization; (5) GPU support.

2 MATRIX-PARAMETRIZED ML MODELS
For ease of understanding, we begin with a very brief introduction
of basic ML concepts underlying our system-algorithm co-design
principles. To accomplish a task (e.g., detecting faces from images),
one designs a mathematical model (e.g., neural network (NN)). The
model has value-unknown parameters (e.g., weights associated with

the connections in an NN) and the goal is to determine (called train-
ing) the optimal parameter values that yield the best performance
(e.g., face-detection accuracy). To achieve this goal, a set of training
data examples (e.g., images and annotated face regions) are provided.
Each example is represented by a feature vector (e.g., concatenating
the pixel values into a vector to represent an image) and (option-
ally) a label (e.g., an annotated face region). On the training data,
one defines a loss function to measure the discrepancy between the
prediction made by the model (e.g., an image region that the model
believes contains a face) and the groundtruth annotated by a human
(e.g., whether this region contains a face). An algorithm (e.g., sto-
chastic gradient descent (SGD)) is employed to minimize this loss
to obtain the optimal parameters. During algorithm execution, the
parameters are stateful and iteratively refined. Starting from an initial
guess (called initialization) of the parameter values, the algorithm
iteratively executes the following steps until these values do not
change anymore (called convergence): (1) randomly selecting one
(or a small batch of) training example(s); (2) computing an update
(e.g., gradient in SGD) of the parameters based on their current state
and the selected examples; (3) applying the update to the parameters.

In many ML models, the parameters are represented as a ma-
trix. For instance, multiclass logistic regression, which classifies
a K-dimensional feature vector into one of J classes, has a J × K
parameter matrix where the j-th row-vector contains the weights of
class j. Other examples include topic models [9], deep learning mod-
els [12, 24], distance metric learning [39], sparse coding [32], matrix
factorization, and so on. These MPMs are widely used in computer
vision, natural language processing, computational biology, physical
sciences, advertisement, recommendation systems, to name a few.

2.1 Sufficient Vectors
For a large subset of MPMs, during training, the update matrix can
be computed from a few vectors (e.g., the outer product of two
vectors), which are referred to as sufficient vectors [12, 38] in the
sense that they are sufficient to produce the update. Many ML models
bear such a property, such as the ones mentioned above. Additional
instances include quasi-Newton methods [5], restricted Boltzmann
machine [21], group Lasso [40], and so on. The following examples
present a detailed illustration.

• Multiclass Logistic Regression (MLR) [8]. Given the parameter
matrix W and a feature vector x , MLR makes a prediction p =
γ (W ∗ x) where γ denotes the softmax operator. Based upon N
training examples,W is trained by minimizing the loss function∑N
i=1 ℓ(γ (W ∗ xi), ti) where ti is a vector representing the class

label and ℓ denotes the cross-entropy loss. When MLR is trained
with SGD, the update matrix generated with respect to example i
is the outer product of vector pi − ti and xi .
• Topic Modeling (TM) [25] is widely utilized for discovering

topics from documents. It is parameterized by a J ×K topic matrix
B, where J is the vocabulary size and K is the number of topics.
To model a document which is represented with a bag-of-words
vector d, TM takes a weighted sum B ∗ a of the K topics vectors
where a is a weight vector and uses the squared L2 loss ∥d−B∗a∥22
to measure the modeling performance. When SGD is used to train
B, the update matrix generated with respect to document d is the
outer product of two vectors (B ∗ a − d) and a.

Orpheus: Efficient Distributed ML via System and Algorithm Co-design SoCC’18, October 11-13, Carlsbad, CA, USA

• Recurrent Neural Network (RNN) [30] is a premier deep learn-
ing model for sequence modeling. For the data example at time
t , which is represented with a feature vector xt , RNN computes
a state vector ht = σ (U ∗ ht−1 +V ∗ xt), where ht−1 is the state
vector at time t − 1, U and V are two parameter matrices and
σ (·) is an element-wise nonlinear transformation. The parameters
are trained using SGD where the gradients are computed using a
backpropagation procedure. The update of U computed at time t
is the outer product of et (the error vector computed via backprop-
agation) and ht−1. Likewise, the update of V is the outer product
of et and xt .
• Quasi-Newton Methods [5] are a family of optimization algo-

rithms, including DFP, BFGS, Broyden, SR1 and so on. These
methods are used to learn ML models parameterized by a vector.
However, they need to maintain an (approximated) Hessian matrix
in memory and update it iteratively during execution. The update
of this matrix can be computed from several vectors. For instance,
the update in BFGS is u ∗ u⊤ −vv⊤, where u and v are vectors.
By properly leveraging the sufficient vector property of these

MPMs, we can greatly reduce the communication and fault tolerance
costs in distributed learning of these models, as shown in the rest of
the paper. It is worth noting that not all MPMs have an SV property.
For example, in hidden Markov model, the update of the transition
matrix cannot be computed from a few vectors.

3 SYSTEM AND ALGORITHM CO-DESIGN
Orpheus is a decentralized system that executes data-parallel1 [12–
14, 27, 37] distributed training of matrix-parameterized ML models.
Its architecture is shown in Figure 1. Orpheus runs on a group of
worker machines connected via a peer-to-peer (P2P) network. Unlike
the client-server architectures including the parameter server [12–
14, 22, 27, 37], machines in Orpheus play equal roles without
server/client asymmetry and every pair of machines can communi-
cate. The entire dataset is divided into equally-sized data partitions
(denoted by D). Each machine loads one partition into the main
memory from a network file system or other file systems and holds
one replica (denoted byW) of the model parameters. Machines syn-
chronize their model replicas to ensure consistency, by exchanging
SVs (denoted by u and v) via network communication. Consistency
refers to that the parameter values of different replicas are as close
as possible. High consistency is crucial for the convergence of algo-
rithms.

At a high-level, Orpheus leverages the SV update property of
MPMs to transform matrix-based operations to vector-based opera-
tions, to achieve cost reduction in communication and fault tolerance.
On one hand, since the update matrix can be computed from a few
vectors, one can transmit the vectors among machines and recon-
struct the update matrices at the receiver side, instead of directly
transmitting full matrices. The vectors have much smaller size than
the full matrix, hence communication cost can be greatly reduced.
On the other hand, the parameter matrix can be represented us-
ing a set of vectors as well. This fact can be explored to improve
checkpoint-based fault tolerance and recovery. Instead of saving
the large-sized parameter matrix, we can choose to save the vectors
representing this matrix, which substantially reduces disk IO.

1Model-parallelism will be left for future study.

Worker 1 Worker 2

Worker 3

11,vu

11,vu

22,vu

22,vu33,vu

1W 2W

3W

33,vu

1D 2D

3D

Figure 1: Architecture of Orpheus.

Around these ideas, Orpheus builds a battery of system-algorithm
co-designs. For efficient communication, on top of previous works [12,
38] which transmit SVs instead of update matrices for parameter
synchronization, we make two new contributions. First, we pro-
pose SV selection, which chooses a subset of representative SVs
to communicate, to reduce the size of each message. Second, we
propose random multicast, under which each machine sends SVs
to a randomly-chosen subset of machines, to reduce the number of
messages.

For light-weight fault tolerance, on the algorithm side, Orpheus
represents the parameter states using a dynamically growing set of
SVs. On the system side, Orpheus uses incremental SV checkpoint.
Machines continuously save the new SVs computed in each logical
time onto stable storage. To recover a parameter state, Orpheus trans-
forms the saved SVs into a matrix. Compared with checkpointing
parameter matrices [1, 41], saving vectors requires much less disk
IO and does not require the application program to halt. Besides, the
parameters can be rollbacked to the state at any logical time.

In programming abstraction, the SVs are explicitly exposed such
that system-level optimizations based on SVs can be exploited. For a
large family of applications, Orpheus is able to automatically identify
the symbolic expressions representing SVs and updates, relieving
users’ burden of manually specifying them.

Orpheus supports two consistency models: Bulk Synchronous
Parallel (BSP) [6] and Staleness Synchronous Parallel (SSP) [22].
BSP sets a global barrier at each clock. A worker cannot proceed
to the next clock until all workers reach this barrier. SSP allows
workers to have different paces as long as their difference in clock is
no more than a user-defined staleness threshold.

3.1 Programming Model
In the Orpheus programming model, users specify how to generate
SVs and how to reconstruct the update matrix from SVs. As we will
show in Section 3.1.1, the latter can be skipped in certain applications
where the SVs can be automatically identified by the system. This
programming model is different from those of existing systems such
as TensorFlow, MXNet, Spark, etc. In these existing programming
models, users specify how to compute update matrices from data
examples and how to refresh the parameter matrix using the updates.

SoCC’18, October 11-13, Carlsbad, CA, USA Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing

Algorithm 1 Execution Semantics

Allocate an empty SVG set S = {}
Select a small batch of training examples X
for each x ∈ X

Compute a SVG s = compute_svg (W (old),x)
Add s to S

end for
Send S to other machines
Receive the SVG set T from other machines
for each s ∈ S ∪T

Compute an update u = compute_update(s)
Update parametersW (new) ←W (old) + u

end for

W

x
* a softmax b

y

cross
entropy f

Figure 2: Expression Graph

The Orpheus programming model is SV-centric while the existing
programming models are update-matrix-centric.

Orpheus programming model provides a data abstraction called
Sufficient Vector Group (SVG) and two user-defined functions that
generate and consume SVGs to update model parameters. Each SVG
contains a set of SVs that are generated with respect to one data ex-
ample and atomically produces a parameter update. The SVs are im-
mutable and dense, and their default type is float. Inside an SVG,
each SV has an index. To program an Orpheus application, users
specify two functions: (1) compute_svg which takes the current
parameter state and one data example as inputs and computes vectors
that collectively form an SVG; (2) compute_update which takes
an SVG and produces a parameter update. These two functions are
invoked by the Orpheus engine to perform data-parallel distributed
ML: each of the P machines holds one shard of the training data
and a replica of parameters; different parameter replicas are synchro-
nized across machines to retain consistency. Every machine executes
a sequence of operations iteratively: in each clock, a small batch of
training examples are randomly selected from the data shard and
compute_svg is invoked to compute an SVG w.r.t each example;
the SVGs are then sent to other machines for parameter synchroniza-
tion; compute_update is invoked to transform locally-generated
SVGs and remotely-received SVGs into updates which are subse-
quently added to the parameter replica. The execution semantics
(per-clock) of Orpheus engine is shown in Algorithm 1. Unlike exist-
ing systems directly computing parameter updates from training data,
Orpheus breaks this computation into two steps and explicitly ex-
poses the intermediate SVs to users, enabling SV-based system-level
optimizations to be exploited.

3.1.1 Automatic Identification of SVs and Updates. When
ML models are trained using gradient descent or quasi-Newton algo-
rithms, the computation of SVGs and updates can be automatically
identified by the Orpheus engine, which relieves users from writing

Type Inputs Outputs Examples
1 vector scalar L2 norm
2 vector vector softmax
3 vector, vector scalar cross entropy
4 vector, vector vector addition, subtraction
5 matrix, vector vector matrix-vector product

Table 1: Different Types of Operators

the two functions compute_svg and compute_update and
eases programming. The only input required from users is a sym-
bolic expression of the loss function, which is in general much easier
to program compared with the two functions. Note that this is not an
extra burden: in most ML applications, users need to specify this loss
function to measure the progress of execution. By contrast, in [38],
these two functions are required from users.

The identification procedure of SVs depends on the optimization
algorithm – either gradient descent or quasi-Newton – specified by
the users for minimizing the loss function. For both algorithms, au-
tomatic differentiation techniques [1, 3] are needed to compute the
derivative of variables. Given the symbolic expression of the loss
function, such as f=cross_entropy(softmax(W*x),y) in
MLR, the Orpheus engine first parses it into an expression graph [7]
as shown in Figure 2. In the graph, circles denote variables including
terminals such as W, x, y and intermediate ones such as a=W*x,
b=softmax(a); boxes denote operators applied to variables. Ac-
cording to their inputs and outputs, operators can be categorized into
different types, shown in Table 1. In the sequel, we use ∂b/∂a to
denote the derivative of b which is a scalar w.r.t to a which could
be a scalar or a vector. Given the expression graph, Orpheus uses
automatic differentiation to compute the symbolic expressions of
the derivative ∂ f /∂z of f w.r.t to each unknown variable z (either
a terminal or an intermediate one). The computation is executed
recursively in the backward direction of the graph. For example,
in Figure 2, to obtain ∂ f /∂a, we first compute ∂ f /∂b, then trans-
form it into ∂ f /∂a using an operator-specific matrix A. For a type-2
operator (e.g., softmax) in Table 1, Ai j = ∂bj/∂ai .

If W is involved in a type-5 operator (Table 1) which takes W
and a vector x as inputs and produces a vector a and the gradient
descent algorithm is used to minimize the loss function, then the
SVG contains two SVs which can be automatically identified: one
is ∂ f /∂a and the other is x . Accordingly, the update of W can be
automatically identified as the outer product of the two SVs.

If quasi-Newton methods are used to learn ML models parameter-
ized by a vector x , Orpheus can automatically identify the SVs of
the update of the approximated Hessian matrixW . First of all, auto-
matic differentiation is applied to compute the symbolic expression
of the derivative д(x) = ∂ f /∂x . To identify the SVs at clock k, we
substitute the states xk+1 and xk of the parameter vector in clock
k + 1 and k into д(x) and calculate a vector yk = д(xk+1) − д(xk).
We also compute another vector sk = xk+1 − xk . Then based on
sk , yk andWk (the state ofW at clock k), we can identify the SVs
which depend on the specific quasi-Newton algorithm instance. For

BFGS, the procedures are: (1) set yk ← yk/
√
y⊤k sk ; (2) compute

vk =Wksk ; (3) set yk ← yk/
√
s⊤k vk . Then the SVs are identified

Orpheus: Efficient Distributed ML via System and Algorithm Co-design SoCC’18, October 11-13, Carlsbad, CA, USA

Algorithm 2 Joint Matrix Column Subset Selection

Input: {X (p)}Pp=1
Initialize: ∀ p, X (p)0 = X (p), S(p)0 = []

for t ∈ {1, . . . ,C} do
Compute the squared L2 norm of column vectors in
{X
(p)
t−1}

P
p=1

Sample a column index it

∀ p, X (p)t ← X
(p)
t−1/{x

(p)
it
}, S(p)t ← S

(p)
t−1 ∪ {x

(p)
it
}

∀ p, X (p)t ← X
(p)
t − S

(p)
t (S

(p)
t)
†X
(p)
t

end for
Output: {S(p)}Pp=1

as yk and vk and the update of Wk is computed as yky⊤k − vkv
⊤
k .

For DFP, the procedures are: (1) set sk ← sk/
√
y⊤k sk ; (2) compute

vk =Wkyk ; (2) set vk ← vk/
√
y⊤k vk . Then the SVs are identified

as sk and vk and the update ofWk is computed as sks⊤k −v
⊤
k vk .

3.2 Communication
Orpheus explores system-algorithm co-design to perform efficient
communication. To ensure the consistency among different param-
eter replicas, the updates computed at different machines need to
be exchanged. In parameter server architectures [12–14, 27, 37],
large matrices need to be communicated among machines: (1) up-
date matrices are sent from workers to servers and (2) parameter
matrices are sent from servers to workers, which incur substantial
communication overhead. The SV property is leveraged in [12] to
reduce one-sided communication cost from workers to the server by
transmitting SVs. But from servers to workers, the newly-updated
parameters need to be sent as a matrix, which still incurs high com-
munication overhead. Recently, several works [26, 38, 42] design
a decentralized peer-to-peer (P2P) architecture where worker ma-
chines synchronize their parameter replicas by exchanging updates
in the form of SVs, as shown in Figure 1. In each clock, each worker
computes SVs and broadcasts them to other workers; meanwhile,
each worker converts the SVs received remotely into update matrices
which are subsequently added to its parameter replica. SV-transfer
can reduce communication overhead fromO(JK) toO(J+K). On top
of the SV-transfer idea, we perform algorithm and system designs to
further improve communication efficiency.

3.2.1 SV Selection. In ML practice, parameter updates are
usually computed over a small batch (whose size typically ranges
from tens to hundreds) of examples. At each clock, a batch of B train-
ing examples are selected and an update is generated with respect to
each example. When represented as matrices, these B updates can
be aggregated into a single matrix to communicate. Hence the com-
munication cost is independent of B. However, this is not the case
in sufficient vectors transfer: the B SVGs cannot be aggregated into
one single SVG; they must be transferred individually. Therefore,
communication cost grows linearly with B. To alleviate this cost,
Orpheus provides SV selection (SVS), which chooses a subset of
C SVGs (where C < B) – that best represent the entire batch – to
communicate.

1

26

5

4

3

1

26

5

4

3

t=1 t=2

Figure 3: Random multicast.

We design an efficient sampling-based algorithm called joint
matrix column subset selection (JMCSS) to perform SVS. Given
the P matrices X (1), · · · ,X (P) where X (p) stores the p-th SV of all
SVGs, JMCSS selects a subset of non-redundant column vectors
from each matrix to approximate the entire matrix. The selection of
columns in different matrices are tied together, i.e., if the i-th column
is selected in one matrix, for all other matrices their i-th column must
be selected as well to atomically form an SVG. Let I = {i1, · · · , iC }
index the selected SVGs and S

(p)
I be a matrix whose columns are

from X (p) and indexed by I . The goal is to find out the optimal
selection I such that the following approximation error is minimized:∑P
p=1 ∥X

(p) −S
(p)
I (S

(p)
I)
†X (p)∥2, where (S(p)I)

† is the pseudo-inverse

of S(p)I .
Finding the exact solution of this problem is NP-hard. To address

this issue, we develop a sampling-based method (Algorithm 2),
which is an adaptation of the iterative norm sampling algorithm [16].
Let S(p) be a dynamically growing matrix that stores the column
vectors to be selected from X (p) and S

(p)
t denote the state of S(p) at

iteration t . Accordingly, X (p) is dynamically shrinking and its state
is denoted by X

(p)
t . At the t-th iteration, an index it is sampled and

the it -th column vectors are taken out from {X (p)}Pp=1 and added

to {S(p)}Pp=1. it is sampled in the following way. First, we compute

the squared L2 norm of each column vector in {X (p)t−1}
P
p=1. Then

sample it (1 ≤ it ≤ B + 1 − t) with probability proportional to∏P
p=1 ∥x

(p)
it
∥22 , where x (p)it

denotes the it -th column vector in X
(p)
t−1.

The selected column vector is removed from X
(p)
t−1 and added to

S
(p)
t−1. Then a back projection is utilized to transform X

(p)
t : X (p)t ←

X
(p)
t − S

(p)
t (S

(p)
t)
†X
(p)
t . After C iterations, we obtain the selected

SVs contained in {S(p)}Pp=1 and pack them into SVGs, which are
subsequently sent to other machines.

Under JMCSS, the aggregated update generated from theC SVGs
is close to that computed from the entire batch. Hence SVS does not
compromise parameter-synchronization quality.

SoCC’18, October 11-13, Carlsbad, CA, USA Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing

3.2.2 Random Multicast. While the P2P transfer of SVs greatly
reduces the size of each message (from a matrix to a few vectors), its
limitation is SVGs need to be sent from each machine to every other
machine, which renders the number of messages per clock to be
quadratic in the number of machines P . To address this issue, several
works [26, 38] use multicast instead of broadcast: each message is
only sent to a subset of rather than all machines; the correctness of
execution can still be guaranteed, thanks to ML-programs’ tolerance
to errors [22]. In these works, the selection of neighboring machines
is fixed and remains unchanged throughout. In contrast, Orpheus
adopts a random multicast scheme: in each clock, each machine
randomly selects Q(Q < P − 1) machines to send SVs to, as shown
in Figure 3.

Unlike a deterministic multicast topology [26, 38] where each
machine communicates with a fixed set of machines throughout the
application run, random multicast provides several benefits. First,
dynamically changing the topology in each clock gives every two
machines a chance to communicate directly, which facilitates more
symmetric (hence faster) synchronization. Second, random multicast
is more robust to network connection failures since the failure of
a network connection between two machines will not affect their
communication with another one. Third, random multicast makes
resource elasticity simpler to implement: adding and removing ma-
chines require minimal coordination with existing ones, unlike a
deterministic topology which must be modified every time a worker
joins or leaves.

3.3 Fault Tolerance
In this section, further exploring the SV update property, we pro-
pose to represent the parameter matrix using SVs. Based on such a
representation, a light-weight fault tolerance approach is developed.

3.3.1 SV-Based Representation of Parameters. We first
show the parameter matrix can be represented as a set of SVs. At
clock T , the parameter state WT is mathematically equal to W0 +∑T
t=1 △Wt where △Wt is the update matrix computed at clock t and

W0 is the initialization of the parameters. As noted earlier, △Wt can
be computed from a SVG Gt : △Wt = h(Gt), using a transformation
h. Following the standard practice of initializing ML models using
randomization, we randomly generate a SVG G0, then let W0 =
h(G0). To this end, the parameter state can be represented asWT =∑T
t=0 h(Gt), using a set of SVGs.

3.3.2 Incremental SV Checkpoint. Based on the SV-representation
(SVR) of parameters and inspired by the asynchronous and incremen-
tal checkpointing methods [2, 31], Orpheus provides an incremental
SV checkpoint (ISVC) mechanism for fault tolerance and recov-
ery: each machine continuously saves the new SVGs computed in
each clock to stable storage and restores the parameters from the
saved SVGs when machine failure happens. Unlike existing sys-
tems [1, 41] which checkpoint large matrices, saving small vectors
consume much less disk bandwidth. To reduce the frequency of
disk write, the SVGs generated after each clock are not immediately
written onto the disk, but staged in the host memory. When a large
batch of SVGs are accumulated, Orpheus writes them together.

𝐷" 𝐷#

𝐷$

𝐷%

𝐶"

𝐶$

𝐶#

𝐶%

𝐷" 𝐷#

𝐷$

𝐷%

𝐶%

𝐶"

𝐶$

𝐶#

𝐶" 𝐶$

𝐶#𝐶%

Figure 4: Parameter-replicas Rotation

ISVC does not require the application program to halt while
checkpointing the SVs. The IO thread reads the SVs and the com-
puting thread writes the parameter matrix (in the second phase of
two-phase hybrid). There is no read/write conflict. In contrast, in
matrix-based checkpointing, the IO thread reads the parameter ma-
trix, which requires the computation thread to halt to ensure consis-
tency, incurring waste of compute cycles.

ISVC is able to rollback the parameters to the state at any clock.
To obtain the state at clock T , Orpheus collects the SVGs computed
up toT and transforms them into a parameter matrix. This granularity
is much more fine-grained than checkpointing parameter matrices.
Since saving large-sized matrices to disk is time-consuming, the sys-
tem can only afford to perform a checkpoint periodically and the pa-
rameter states between two checkpoints are lost. The restore(T)
API is used for recovery where T is a user-specified clock which the
parameters are to be rollbacked to. The default T is the latest clock.

3.4 Consistency
In this section, we propose two protocols to improve the consistency
among parameter replicas.

3.4.1 Periodic Centralized Synchronization. In centralized
architectures such as parameter servers, the shared state of param-
eters is maintained on the servers and local parameter caches on
workers are continuously synchronized with the shared state. In this
way, different parameter caches are highly consistent. In Orpheus,
to avoid transmitting parameter matrices, no shared state is main-
tained and parameter replicas are synchronized in a decentralized
manner by exchanging updates among each pair of workers. Without
the orchestration of a centralized server, the workers operate au-
tonomously and their parameter replicas have a higher risk of getting
out of synchronization. To alleviate this risk, we adopt a periodic cen-
tralized synchronization strategy: every R iterations, the parameter
replicas are averaged and reset to the average. A centralized coordi-
nator sets a global barrier every R iterations. When all workers reach
this barrier, the coordinator calls the AllReduce(average)API
to average the parameter replicas and set each replica to the aver-
age. After that, workers perform decentralized synchronization until
next barrier. Centralized synchronization effectively removes the
parameter replicas’ discrepancy accumulated during decentralized
execution and it will not incur substantial communication cost since
it is invoked periodically.

Orpheus: Efficient Distributed ML via System and Algorithm Co-design SoCC’18, October 11-13, Carlsbad, CA, USA

3.4.2 Parameter-Replicas Rotation. Orpheus adopts data
parallelism, where each worker has access to one shard of the data.
Since computation is usually much faster than communication, the
updates computed locally are much more frequent than those re-
ceived remotely. This would render imbalanced updating of param-
eters: a parameter replica is more frequently updated based on the
local data residing in the same machine than data shards on other ma-
chines. This is another cause of out-of-synchronization. To address
this issue, Orpheus performs parameter-replica rotation, which en-
ables each parameter replica can explore all data shards on different
machines. Logically, the machines are connected via a ring network.
Parameter replicas rotate along the ring periodically (every S itera-
tions) while each data shard sits still on the same machine during the
entire execution. Figure 4 illustrates the process. Four machines are
connected in a ring, each holding one data shard D. After every S
iterations, the parameter replicas (denoted by C) perform a rotation
clockwise: C1 moves from machine 1 to 2; C2 moves from machine
2 to 3; etc. In the next round, C1 would be moved from machine 2
to 3 and so on. We choose to rotate the parameters rather than data
since the size of parameters is much smaller than data. A centralized
coordinator sets a barrier every S iterations. When all workers reach
the barrier, it invokes the Rotate API which triggers the rotation
of parameter replicas.

4 IMPLEMENTATION
Orpheus is a decentralized system, where workers are symmetric,
running the same software stack, which is conceptually divided into
three layers (Figure 5): (1) ML application layer including ML pro-
grams implemented on top of Orpheus, such as multiclass logistic
regression, topic models, deep learning models, etc.; (2) Service
layer for automatic identification, SV selection, fault tolerance, etc.;
(3) P2P communication layer for sufficient vector transfer and ran-
dom multicast.

The major modules in Orpheus include: (1) an interpreter that
automatically identifies the symbolic expressions of SVs and pa-
rameter updates; (2) a SV generator that selects training examples
from local data shard and computes a SVG for each example using
the symbolic expressions of SVs; (3) a SV selector that chooses
a small subset of most representative SVs out of those computed
by the generator; (4) a communication manager that transfers the
SVs chosen by the selector using broadcast or random multicast and
receives remote SVs; (5) an update generator which computes up-
date matrices from locally-generated and remotely-received SVs and
updates the parameter matrix; (6) a central coordinator for periodic
centralized synchronization and parameter-replicas rotation.

The Orpheus programming interface exposes a rich set of oper-
ators, such as matrix multiplication, vector addition, and softmax,
through which users write their ML programs. Each operator has a
CPU implementation and a GPU implementation built upon highly
optimized libraries such as Eigen2, cuBLAS3 and cuDNN4. In GPU
implementation, Orpheus performs kernel fusion which combines a
sequence of kernels into a single one, to reduce the number of kernel
lunches that bear large overhead. Orpheus generates a dependency

2http://eigen.tuxfamily.org/index.php?title=Main_Page
3https://developer.nvidia.com/cublas
4https://developer.nvidia.com/cudnn

Broadcast

Message	Passing	Library	(MPI,	ZMQ)

MLR

Automatic Identification SV Selection

P2P	Communication	Layer

Service	Layer

Deep Learning Quasi-Newton

ML	Application	Layer

Fault Tolerance

TM

Multicast

Figure 5: Software Stack

graph of operators by parsing users’ program and traverses the graph
to fuse consecutive operators into one CUDA kernel.

Orpheus is elastic to resource adjustment. Adding new machines
and preempting existing machines do not interrupt the current exe-
cution. To add a new machine, the central coordinator executes the
following steps: (1) launching the Orpheus engine and application
program on the new machine; (2) averaging the parameter replicas
of existing machines and placing the averaged parameters on the
new machine; (3) taking a chunk of training data from each existing
machine and assigning it to the new machine; (4) adding the new
machine into the P2P network. When an existing machine is pre-
empted, it is taken off from the P2P network and its data shard is
re-distributed to other machines.

The loading of training data from CPU to GPU is overlapped with
the SV generator via a data queue. The next batches of training exam-
ples are prefetched into the queue while the generator is processing
the current one. In certain applications, each training example is asso-
ciated with a data-dependent variable (DDV). For instance, in topic
model, each document has a topic proportion vector. The states of
DDVs need to be maintained throughout execution. Training exam-
ples and their DDVs are stored in consecutive host/device memory
for locality and are prefetched together. At the end of a clock, GPU
buffer storing examples is immediately ready for overwriting. The
DDVs are swapped from GPU memory to host memory, which is
pipelined using a DDV queue.

4.1 Hardware/Software-Aware SV Transfer
For efficient SV transfer, Orpheus provides a library of broadcast/multicast
protocols designed for different hardware and software configura-
tions, including (1) whether the communication is CPU-to-CPU or
GPU-to-GPU; (2) whether InfiniBand5 is available; (3) whether the
consistency model is BSP or SSP.

To begin with, we introduce the protocols for broadcast, which
serve as the building blocks of multicast.

• CPU-to-CPU, BSP In this case, we use the MPI_Allgather6 rou-
tine to perform all-to-all broadcast. In each clock, it gathers the

5http://www.infinibandta.com
6https://www.mpich.org/

http://eigen.tuxfamily.org/index.php?title=Main_Page
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn

SoCC’18, October 11-13, Carlsbad, CA, USA Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing

SVs computed by each machine and distributes them to all ma-
chines. MPI_Allgather is a blocking operation which is in accor-
dance with the BSP model.
• CPU-to-CPU, SSP Under SSP, each machine is allowed to have

a different pace to compute and broadcast SVs. To enable this, the
all-to-all broadcast is decomposed into multiple one-to-all broad-
cast. Each machine separately invokes the MPI_Bcast routine to
broadcast its messages to others.
• CPU-to-CPU, BSP, InfiniBand An all-gather operation is exe-

cuted by leveraging the Remote Direct Memory Access (RDMA)
feature [34] provided by InfiniBand, which supports zero-copy net-
working by enabling the network adapter to transfer data directly
to or from application memory, without going through operating
system. The recursive doubling (RD) [19] algorithm is used to
implement all-gather, where pairs of processes exchange their
SVs via point-to-point communication. In each clock, the SVs
collected during all previous clocks are included in the exchange.
RDMA is used for the point-to-point transfer during the execution
of RD.
• CPU-to-CPU, SSP, InfiniBand Each machine performs one-to-

all broadcast separately, using the hardware supported broadcast
(HSB) in InfiniBand. HSB is topology-aware: packets are dupli-
cated by the switches only when necessary; therefore network
traffic is reduced by eliminating the cases that multiple identical
packets travel through the same physical link. The limitation of
HSB is that messages can be dropped or arrive out of order, which
degrades the correctness of ML execution. To retain reliability
and in-order delivery, on top of HSB another layer of network
protocol [28] is added, where (1) receivers send ACKs back to
the root machine to confirm message delivery; (2) a message is
retransmitted using point-to-point reliable communication if no
ACK is received before timeout; (3) receivers use a continuous
clock counter to detect out-of-order messages and put them in
order.
• GPU-to-GPU To reduce the latency of inter-machine SV transfer

between two GPUs, we use the GPUDirect RDMA7 provided by
CUDA, which allows network adapters to directly read from or
write to GPU device memory, without staging through host mem-
ory. Between two network adaptors, the SVs are communicated
using the methods listed above.

Similar to broadcast, several multicast protocols tailored to differ-
ent hardware/software configurations are provided.

• CPU-to-CPU We use MPI group communication primitives. In
each clock, MPI_Comm_Split is invoked to split the commu-
nicator MPI_COMM_WORLD into a target group (containing the
selected machines) and a non-target group. Then the message is
broadcast to the target group.
• CPU-to-CPU, InfiniBand Similar to broadcast, the efficient but

unreliable multicast supported by InfiniBand at hardware level
and a reliable point-to-point network protocol are used together.
InfiniBand combines the selected machines into a single multicast
address and sends the message to it. Point-to-point retransmission
is issued if no ACK is received before timeout.

7http://docs.nvidia.com/cuda/gpudirect-rdma/#axzz4eWBuf9Rj

• GPU-to-GPU GPUDirect RDMA is used to copy buffers from
GPU memory to network adaptor. Then the communication be-
tween network adaptors is handled using the two methods de-
scribed above.

5 EVALUATION
We evaluate Orpheus on three ML applications: multiclass logis-
tic regression (MLR), topic model (TM), long short-term memory
network (LSTM)8.

5.1 Experimental Setup
Cluster Setup. We used two clusters: (1) a CPU cluster having

34 machines each with 64 cores and 128 GB memory, connected
by FDR10 Infiniband; (2) a GPU cluster having 40 machines each
with one TitanX GPU, 16 CPU cores and 64GB memory, connected
by 40Gbps Ethernet. We trained MLR and TM on the CPU cluster
and LSTM on GPU cluster. Unless otherwise noted, the experiments
were performed using all machines in each cluster.

Baseline Systems. We compared with (1) Spark-MLR from Spark
MLlib-2.0.0 [41], which is based on an L-BFGS algorithm9; (2)
TensorFlow-MLR and TensorFlow-LSTM: TensorFlow-1.0 imple-
mentation10 of MLR and TensorFlow-1.7 implementation of LSTM,
which are partially based on PS; (4) MXNet-MLR and MXNet-
LSTM: MXNet-0.7 [11] implementation11 of MLR and MXNet-
1.1 implementation of LSTM, using PS-based data parallelism; (4)
Bosen-MLR and Bosen-TM: MLR and TM implemented using a
recent PS framework: Bosen [37], with additional system features
(e.g., parameter-update filtering) borrowed from another PS [27];
(5) SVB-MLR and SVB-TM which are implemented on top of the
sufficient vector broadcasting (SVB) [38] framework which per-
forms P2P transfer of SVs to reduce communication cost. SVB does
not support GPU programs, hence the LSTM model (which relies
on GPU computation) is not compared12. (6) Gopal-MLR [18]: a
model-parallel MLR based on Hadoop; (7) FlexiFaCT-TM [25]: a
Hadoop implementation of TM. Note that Spark and Tensorflow im-
plement a probabilistic topic model – latent Dirichlet allocation [9],
which is different from the non-probabilistic TM in Orpheus. The
configurations of baseline systems are tuned to achieve the best
performance of each system. In LSTM experiments, all systems
use cuDNN version 6.1, so they have access to the same optimized
GPU kernels. In the baseline systems, matrix sparsity is leveraged to
reduce costs whenever applicable. For instance, in communication,
only nonzero entries are transmitted.

Datasets. Three datasets were used in the experiments: Wikipedia [33],
PubMed13 and 1B-Word [10]. The Wikipedia dataset contains ∼2.4
million documents from 325K classes. Documents are represented
with 20K-dimensional bag-of-words vectors. The PubMed dataset

8LSTM is a special type of recurrent neural network.
9Spark-MLR has a SGD-based implementation, which converges slower than L-BFGS.
10The cluster used for the MLR experiments was decommissioned in March 2017.
On the MLR experiments, we were not able to compare with TensorFlow-1.7 and
MXNet-1.1 which were released after March 2017.
11See footnote 10.
12The Poseidon framework [42] supports SV transfer and GPU programming, however
it does not support the LSTM model, which is hence not compared.
13https://catalog.data.gov/dataset/pubmed

Orpheus: Efficient Distributed ML via System and Algorithm Co-design SoCC’18, October 11-13, Carlsbad, CA, USA

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0 5 10 15 20 25

O
b

je
ct

iv
e

V
al

u
e

Time (h)

Spark Gopal TensorFlow Bosen MXNet SFB Orpheus

Figure 6: Convergence curves in MLR experiments. The algo-
rithms terminate when the objectives reach 0.128 (consecutive
change is less than 1e-3).

contains 8.2M documents and ∼0.74B words. The vocabulary size
is 141K. The 1B-Word dataset contains ∼0.8B words with a vo-
cabulary size of ∼0.8M. The MLR, TM and LSTM experiments
were conducted on the Wikipedia, PubMed and 1B-Word dataset
respectively.

ML and System Hyper-parameter Setup. The topic number in
TM and the state-vector dimension in LSTM was set to 50K and
40K respectively. As a result, the parameter matrix in MLR, TM and
LSTM has a size of 325K×20K, 50K×141K, 40K×40K, containing
∼6.5B, ∼7.1B, ∼1.6B entries respectively. The parameters in all
applications were trained using the SGD algorithm with a mini-
batch size of 100. In SV selection, the number of selected SVs was
set to 25. In random multicast, the number of destinations each
machine sends a message to was set to 4. The consistency model
was set to SSP with a staleness value of 4.

5.2 Overall Results
Comparison with Other Systems. We first compare the conver-

gence speed of these systems. In this comparison, no system uses
fault tolerance. By convergence, it means the loss function value
(e.g., cross-entropy loss in MLR, negative log-likelihood in TM and
LSTM) on the training set levels off. A better system takes less time
to converge. In each of our experiments, different systems converged
to the same loss value. Figure 6 shows the convergence curves for
MLR (34 machines). The second and third columns of Table 2 shows
the convergence time of each system, under a different number of
machines. On all three models, Orpheus converges faster than the
baseline systems.

We first compare Orpheus with parameter server (PS) based sys-
tems including Bosen [37], TensorFlow [1], MXNet [11] and with
a peer-to-peer architecture SVB [38] (which has leveraged SVs for
efficient communication). On MLR, with 34 CPU machines, the
speedup of Orpheus over Bosen, TensorFlow-1.0, MXNet-0.7 and
SVB is 3.7x, 4.7x, 4.4x and 1.4x respectively. On TM, with 34 CPU
machines, Orpheus is 4.4x and 1.8x faster than Bosen and SVB
respectively. On LSTM, with 40 GPU machines, Orpheus is 1.4x
faster than TensorFlow-1.7 and 1.1x faster than MXNet-1.1. As we

MLR
CPU Machines 12 34 Speedup

Spark 37.3 19.6 1.9
Gopal 31.7 15.1 2.1

TensorFlow-1.0 16.9 8.9 1.9
Bosen 15.7 7.1 2.2

MXNet-0.7 12.8 8.4 1.5
SVB 5.1 2.7 1.9

Orpheus 4.4 1.9 2.3
TM

CPU Machines 12 34 Speedup
FlexiFaCT 61.1 33.9 1.8

Bosen 49.4 23.5 2.1
SVB 20.1 9.7 2.1

Orpheus 13.2 5.4 2.4
LSTM

GPU Machines 12 40 Speedup
TensorFlow-1.7 14.2 5.9 2.4

MXNet-1.1 12.5 4.6 2.7
Orpheus 11.9 4.1 2.9

Table 2: The second and third columns show the convergence
time (hours) of each system, under a different number of ma-
chines. The third column shows the speedup of each system
when the number of machines is increased from 12 to 34 (in
MLR and TM), or from 12 to 40 (in LSTM).

will further show later, these speedups are achieved mainly because
Orpheus is more efficient in communication. Compared with SVB,
Orpheus reduces the number of sent SVs using SV selection and
provides a random multicast scheme which works better than the
deterministic multicast scheme utilized in SVB. Similar to SVB,
Orpheus transmits small-sized vectors instead of large-sized matri-
ces, which greatly reduces network traffic, compared with PS-based
systems.

Next, we compare Orpheus with the rest of baseline systems.
Using 34 CPU machines, Orpheus is 10.3x and 7.9x faster than
Spark and Gopal on MLR, and 6.3x faster than FlexiFaCT on TM.
Gopal outperforms Spark possibly because it uses a better distributed-
algorithm which is based on model-parallelism. However, it is slower
than PS systems due to the disk IO overhead of Hadoop. So is
FlexiFaCT, which is a Hadoop-based system. Spark is at least two
times slower than PS systems (implemented with C++) due to the
overhead incurred by Resilient Distributed Datasets and Java Virtual
Machine.

Scalability. We evaluated how Orpheus scales up as the number
of machines increases. The results on MLR and LSTM are shown in
Figure 7. With 34 CPU machines, Orpheus achieved 27.3x speedup
on MLR. With 40 GPU machines, a 32.2x speedup is achieved on
LSTM. The scalability of Orpheus is better than baseline systems,
as shown in the fourth column of Table 2, where we measured
the speedups for MLR and TM when the number of CPU/GPU
machines increases from 12 to 34 and for LSTM when the number
of GPU machines increases from 12 to 40. For example, in LSTM

SoCC’18, October 11-13, Carlsbad, CA, USA Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing

1 1 1
12 12 5.3
24 24 9.3
34 34 17.1

s=0

s=20
1 1

12 10.9
24 20.4
34 27.3

1
12

24
34

1
10.9

20.4
27.3

0
10
20
30
40

0 10 20 30 40

Sp
ee
du

p

Number	of	CPU	machines in MLR

Linear Orpheus

1 1 1
12 12 5.3
24 24 9.3
34 34 17.1

s=0

s=20
1 1

12 10.4
24 20.6
40 32.2

1
10.4

20.6

32.2

1

12

24

40

0
10
20
30
40
50

0 10 20 30 40 50

Sp
ee
du

p

Number	of	GPU	machines in LSTM

Linear Orpheus

Figure 7: Scalability with more machines: (left) Orpheus-MLR;
(middle) Orpheus-LSTM.

experiments with 40 GPU machines, Orpheus achieves a speedup of
2.9 compared with using 12 machines.

5.3 Evaluation of Individual Components
In this section, we evaluate the impact of each individual component.
We compare the following systems: (1) Matrix+PS: synchroniz-
ing parameter copies by transmitting full matrices using a parame-
ter server (PS) architecture; (2) SVB: SV broadcasting (SVB); (3)
SVB+SVS: adding SV selection (SVS) to SVB; (4) SVB+SVS+RM:
adding random multicast (RM); (5) SVB+SVS+RM+PCS: adding
periodic centralized synchronization (PCS); (6) SVB+SVS+RM+PRR:
adding parameter-replicas rotation (PRR). In these systems, no
checkpointing is used. The number of machines in MLR, TM, and
LSTM is set to 34, 34 and 40 respectively. Table 3 shows the conver-
gence time of these systems, where we make the following obser-
vations. First, SVB is much more efficient than Matrix+PS. SVB is
2.6x, 2.4x and 2x faster than Matrix+PS on MLR, TM and LSTM
respectively. The reason is: SVB transmits small-sized vectors while
Matrix+PS transmits large matrices; the communication cost of SVB
is much smaller. Second, adding SVS to SVB further reduces the
runtime – by 15%, 19%, and 20% – on MLR, TM and LSTM re-
spectively. SVS selects a subset of SVGs for communication, which
reduces network traffic. Third, incorporating RM reduces the run-
time of SVB+SVS by 9%, 16%, and 20% on the three applications.
Under RM, in each clock, each machine selects a subset of machines
to send SVs to, which reduces the number of network messages.
Fourth, adding PCS further speeds up convergence. Via PCS, the
incoherence among different parameter copies is alleviated, which
reduces noise and improves convergence quality. Fifth, comparing
the last two rows of this table, we confirm the effectiveness of PRR in
reducing convergence time. Under PRR, each parameter replica has
the chance to explore all data shards on different machines, which
facilitates symmetric update of parameters.

Figure 8 shows the breakdown of network waiting time and com-
putation time for four configurations. Compared with Matrix+PS,
SVB greatly reduces network waiting time by avoiding transmitting
matrices. It slightly increases the computation time since the same
SVG needs to be converted into an update matrix at each worker.
Adding SVS further decreases network time since it reduces the
number of transmitted SVs. SVS causes the increase of computation
time because of the overhead of executing the JMCSS algorithm
(Algorithm 2). The network time is further reduced by using RM,
which decreases the number of network messages. RM has little
impact on the computation time.

MLR TM LSTM
Matrix+PS 7.1 23.5 16.8
SVB 2.7 9.7 8.6
SVB+SVS 2.3 7.9 6.9
SVB+SVS+RM 2.1 6.6 5.5
SVB+SVS+RM+PCS 2.0 5.9 4.9
SVB+SVS+RM+PCS+PRR 1.9 5.4 4.1

Table 3: Convergence time (hours) of different system configu-
rations

0

5

10

15

20

Matrix+PS SVB SVB+SVS SVB+SVS+RM

Computation Time Network Waiting Time

Figure 8: Breakdown of network waiting time (hours) and com-
putation time (hours).

5 3.4
25 1.9
50 2.3
75 2.7
100 3.2

0

1

2

3

4

5 25 50 75 100

Co
nv
er
ge
nc
e	
tim

e	
(h
)

C

Figure 9: How the system parameter C in SV selection affects
the running time of Orpheus for MLR.

In the sequel, we present more detailed evaluations of several key
components.

SV Selection. Figure 9 shows the convergence time for MLR
under varyingC – the number of selected SVs. Compared with using
the entire batch (C = 100), selecting a subset (e.g., C = 25) of SVs
to communicate significantly speeds up convergence, thanks to the
reduced network traffic. On the other hand, C cannot be too small,
which otherwise incurs large approximation errors in parameter
updates. For example, the convergence time under C = 5 is worse
than that under C = 100.

Orpheus: Efficient Distributed ML via System and Algorithm Co-design SoCC’18, October 11-13, Carlsbad, CA, USA

1 3.2
4 2.4
8 1.9
16 2.6
33 2.8

0

1

2

3

4

1 4 8 16 33

Co
nv
er
ge
nc
e	
tim

e	
(h
)

Q

Figure 10: How the system parameter Q in random multicast
affects the running time of Orpheus for MLR.

Random Multicast (RM). Figure 10 shows the convergence time
of MLR under varying Q – the number of destinations each machine
sends messages to. As can be seen, communicating with all machines
(i.e., Q = 33) incurs much more running time than using random
multicast (Q = 4), which demonstrates the effectiveness of RM in
improving communication efficiency. The efficiency results from
RM’s ability to reduce the number of network messages. However,
Q cannot be too small. Otherwise, the running time increases (e.g.,
when Q = 1), due to the severe synchronization delays.

We compared RM with two multicast schemes: (1) deterministic
multicast (DM) [26, 38] where each sending machine sends mes-
sages to a fixed set of 4 receiving machines; the set of 4 receiving
machines is different for each sending machine and is chosen to
balance network load across the cluster and prevent network hot
spots; (2) round-robin multicast (RRM) [26, 36] where every two
workers communicate with each other periodically according to a
deterministic circular order. Figure 11 shows the convergence time
of MLR and LSTM under DM, RRM and RM. In both applications,
RM takes less time to converge. Compared with DM, RM uses a
randomly changing multicast topology to enable each pair of ma-
chines to have some chance to communicate directly, thus facilitating
more symmetric (hence faster) synchronization of parameter repli-
cas. Compared with RRM, the randomness of RM facilitates faster
“mixing" [20] of parameter copies and hence speeds up convergence.

To examine the robustness of RM against network connection
failures, we simulated the effect that in each clock the connections
between 10% of machine pairs are “broken” randomly. Figure 12
shows the relative increase of convergence time when failure hap-
pens. As can be seen, the relative increase under RM is much smaller
than that under DM and RRM, confirming that RM is more robust,
due to its random nature.

Fault Tolerance and Recovery. We compare the following con-
figurations: (1) no checkpoint; (2) matrix-based checkpoint: every
10014 clocks, Orpheus saves the parameter matrix onto the disk;
when saving matrices, the computation halts to ensure consistency;
(3) SV-based checkpoint; (4) matrix-based recovery: we simulated

14Choosing a number smaller than 100 would entail more disk-IO waiting.

DM RRM RM

MLR 2.4 2.2 1.5

LSTM 4.6 4.1 3.4

0

1

2

3

4

5

MLR LSTM

C
o

n
ve

rg
en

ce
 t

im
e

(h
)

DM RRM RM

Figure 11: Convergence time in Orpheus under deterministic,
round-robin and random broadcast for MLR and LSTM.

0

10

20

30

MLR LSTM

R
el

at
iv

e
in

cr
ea

se

o
f

ti
m

e
(%

)

DM RRM RM

Figure 12: Relative increase of convergence time when network
connection fails.

the effect that in each clock, each machine fails with a probability
of 0.01; when failure happens, a recovery is performed based on the
checkpointed matrices; (5) SV-based recovery: machine failure is
simulated in the same way as (4) and recovery is based on the saved
SVs. For (2) and (3), no machine failure happens.

Table 4 shows the convergence time of MLR (34 machines) and
LSTM (40 machines) under different configurations. From this ta-
ble, we observe the following. First, compared with no-checkpoint,
matrix-based checkpoint method substantially increases the con-
vergence time while our SV-based checkpointing incurs very little
increase. The reasons are twofold: (1) saving vectors consumes much
less disk bandwidth than saving matrices; (2) checkpointing SVs
does not halt computation, wasting no compute cycles, which is not
the case in checkpointing matrices. Second, in the case where ma-
chine failure happens, matrix-based recovery causes more slowing-
down of convergence than SV-based recovery. This is because in
matrix-based recovery, the parameters can only be rolled back to the
state that is saved every 100 clocks. If the failure happens at clock
199, the parameters are rolled back to the state saved at clock 100.
The computation from clock 101 to 198 are wasted. However, in
SV-based recovery, the parameter state after every clock is preserved.
It can always roll back to the latest parameter state (e.g., the state
after clock 198) and no computation is wasted.

SoCC’18, October 11-13, Carlsbad, CA, USA Pengtao Xie, Jin Kyu Kim, Qirong Ho, Yaoliang Yu, and Eric Xing

MLR LSTM
No checkpoint 1.9 4.1
Matrix-based checkpoint 2.4 5.2
SV-based checkpoint 1.9 4.2
Matrix-based recovery 2.9 6.7
SV-based recovery 2.3 4.8

Table 4: Convergence time (hours) under different configura-
tions of fault tolerance and recovery.

6 RELATED WORKS
Many distributed ML systems have been built recently, including
(1) dataflow systems such as Hadoop-based Mahout [15] and Spark-
based MLlib [41]; (2) graph computation frameworks such as Pregel
[29] and GraphLab [17]; (3) parameter server (PS) architectures
such as DistBelief [15], Project Adam [12], ParameterServer [27],
Bosen PS [37] and GeePS [13]; (4) hybrid systems such as Ten-
sorFlow [1] and MXNet [11]. These systems explore the tradeoffs
among correctness of computation, ease of programmability and
efficiency of execution. Though not designed specifically for ML
models, Hadoop and Spark support the embarrassingly-parallel ex-
ecution of ML training. They provide easy-to-use programming
interface and can be applied to almost any ML application. However,
the bulk synchronous parallel consistency imposed by these systems
inhibits the training efficiency. Parameter server architectures are
arguably the most widely used in distributed ML due to three merits:
(1) they adopt asynchronous or bounded asynchronous parallelism
that improves efficiency without sacrificing correctness; (2) they
have wide applicability to nearly all ML models; (3) they provide
unified programming interface that facilitates the agile development
of ML programs. When used to train MPMs, these systems operate
on large-sized matrices, which incur high overhead in all system
aspects. It is worth noting that these systems are more general than
Orpheus in the sense that they can support the training of more ML
models. Orpheus is only applicable when the ML model is param-
eterized by a matrix and this matrix satisfies the sufficient vector
property.

Peer-to-peer (P2P) architectures have been investigated in dis-
tributed ML [26, 36, 38, 42]. Li et al. [26] propose to synchronize
parameter replicas by exchanging parameter updates in a P2P man-
ner to simplify fault-tolerance. Watcharapichat et al. [36] design
a decentralized architecture to exchange partial gradient of deep
neural networks among machines, for the sake of saturating clus-
ter resources. These two works transmit matrices in the network
and do not leverage the SVs to reduce communication cost. Two
recent works [38, 42] explore the idea of broadcasting SVs. They
focus on reducing network traffic and do not leverage the SVs to
improve efficiency in fault tolerance, nor support the automatic dis-
covery of SVs. Bellet et al. [4] designed a decentralized solution
where agents operate asynchronously and communicate over a net-
work in a peer-to-peer fashion, to learn personalized models under
strong privacy requirements. Vanhaesebrouck et al. [35] proposed
two asynchronous gossip algorithms running in a fully decentral-
ized manner to learn agents in a collaborative peer-to-peer network,
where each agent learns a personalized model according to its own

learning objective and improves upon its locally trained model by
communicating with other agents that have similar objectives.

7 CONCLUSIONS AND DISCUSSIONS
We have described the Orpheus system, which thoroughly exploits
system and algorithm co-design to support the efficient training of
MPMs. Orpheus transforms matrix-based communication and fault
tolerance into vector-level execution, which substantially reduces the
costs from quadratic in matrix dimensions down to linear. Evaluation
on three applications demonstrates the low communication and fault-
tolerance costs, high execution speed and scalability of Orpheus,
which greatly improves over well-established baseline systems.

Compared with existing systems, the applicability of Orpheus is
narrower. It is mainly suitable for learning large-sized MPMs that
have the SV update property while existing systems can be applied to
a broader range of MPMs and vector-parameterized models. When
the size of a parameter matrix is small, existing systems are better
choices than Orpheus. Orpheus is based on a peer-to-peer architec-
ture, where the number of network messages grows quadratically
with the number of machines. This makes it a less-ideal system
when tens of thousands of machines are used. Partial broadcasting
approaches have been investigated in [26, 38] to reduce the num-
ber of network messages. In these approaches, each machine sends
messages to a subset of rather than all machines. However, their
effectiveness is yet to be verified in data-center-scale computing en-
vironments. Under circumstances where a very large mini-batch size
is preferred, Orpheus may be less favorable. When the parameter
matrix or update matrix is sparse, the advantage of Orpheus over
PS systems diminishes since the latter can leverage the sparsity to
reduce communication cost.

While system and algorithm co-design effectively boosts system
efficiency, there is a caveat. The tight coupling between the system
and algorithms may break abstractions and make the system less
modular as a whole, thus harder to maintain in the long term.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for pro-
viding insightful feedback that helps to improve this work a lot. The
authors are also grateful for the valuable comments from Yi Zhou,
Abhimanu Kumar, Hao Zhang, Shizhen Xu. The work is supported
by National Science Foundation IIS1447676 and CCF1629559.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A system for large-scale machine learning. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA.

[2] Saurabh Agarwal, Rahul Garg, Meeta S Gupta, and Jose E Moreira. 2004. Adaptive
incremental checkpointing for massively parallel systems. In Proceedings of the
18th annual international conference on Supercomputing. ACM, 277–286.

[3] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Good-
fellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed improvements. arXiv preprint
arXiv:1211.5590 (2012).

[4] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. 2017.
Personalized and Private Peer-to-Peer Machine Learning. arXiv preprint
arXiv:1705.08435 (2017).

[5] Dimitri P Bertsekas. 1999. Nonlinear programming. Athena scientific Belmont.

Orpheus: Efficient Distributed ML via System and Algorithm Co-design SoCC’18, October 11-13, Carlsbad, CA, USA

[6] Kanishka Bhaduri, Ran Wolff, Chris Giannella, and Hillol Kargupta. 2008. Dis-
tributed decision-tree induction in peer-to-peer systems. Statistical Analysis and
Data Mining: The ASA Data Science Journal (2008).

[7] Christian H Bischof, Paul D Hovland, and Boyana Norris. 2008. On the implemen-
tation of automatic differentiation tools. Higher-Order and Symbolic Computation
21, 3 (2008), 311–331.

[8] Christopher M Bishop et al. 2006. Pattern recognition and machine learning.
springer New York.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet
allocation. Journal of machine Learning research 3, Jan (2003), 993–1022.

[10] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. 2013. One billion word benchmark for measuring
progress in statistical language modeling. arXiv preprint arXiv:1312.3005 (2013).

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[12] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: building an efficient and scalable deep learning training sys-
tem. In USENIX Symposium on Operating Systems Design and Implementation.

[13] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P
Xing. 2016. Geeps: Scalable deep learning on distributed gpus with a gpu-
specialized parameter server. In Proceedings of the Eleventh European Conference
on Computer Systems. ACM, 4.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In NIPS.

[15] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. CACM (2008).

[16] Amit Deshpande and Santosh Vempala. 2006. Adaptive sampling and fast low-
rank matrix approximation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Springer, 292–303.

[17] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
Presented as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). 17–30.

[18] Siddharth Gopal and Yiming Yang. 2013. Distributed training of Large-scale
Logistic models. In ICML.

[19] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A
high-performance, portable implementation of the MPI message passing interface
standard. Parallel computing 22, 6 (1996), 789–828.

[20] Bernhard Haeupler. 2015. Simple, fast and deterministic gossip and rumor spread-
ing. Journal of the ACM (JACM) 62, 6 (2015), 47.

[21] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. Science 313, 5786 (2006), 504–507.

[22] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric Xing. 2013. More effective
distributed ml via a stale synchronous parallel parameter server. In NIPS.

[23] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A Gibson,
and Eric P Xing. 2016. STRADS: a distributed framework for scheduled model
parallel machine learning. In Proceedings of the Eleventh European Conference
on Computer Systems. ACM, 5.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[25] Abhimanu Kumar, Alex Beutel, Qirong Ho, and Eric P Xing. 2014. Fugue: Slow-
Worker-Agnostic Distributed Learning for Big Models on Big Data.. In AISTATS.
531–539.

[26] Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungureanu. 2015. MALT: dis-
tributed data-parallelism for existing ML applications. In Proceedings of the Tenth
European Conference on Computer Systems.

[27] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In USENIX Symposium on
Operating Systems Design and Implementation.

[28] Jiuxing Liu, Amith R Mamidala, and Dhabaleswar K Panda. 2004. Fast and
scalable MPI-level broadcast using InfiniBand’s hardware multicast support. In
Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional. IEEE, 10.

[29] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In ACM SIGMOD International Conference on Management of
data.

[30] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model.. In Interspeech,
Vol. 2. 3.

[31] Bogdan Nicolae and Franck Cappello. 2013. AI-Ckpt: leveraging memory access
patterns for adaptive asynchronous incremental checkpointing. In Proceedings of

the 22nd international symposium on High-performance parallel and distributed
computing. ACM, 155–166.

[32] Bruno A Olshausen and David J Field. 1997. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision research (1997).

[33] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres, George
Paliouras, Eric Gaussier, Ion Androutsopoulos, Massih-Reza Amini, and Patrick
Galinari. 2015. LSHTC: A Benchmark for Large-Scale Text Classification.
arXiv:1503.08581 [cs.IR] (2015).

[34] Sayantan Sur, Uday Kumar Reddy Bondhugula, Amith Mamidala, H-W Jin, and
Dhabaleswar K Panda. 2005. High performance rdma based all-to-all broadcast for
infiniband clusters. In International Conference on High-Performance Computing.
Springer, 148–157.

[35] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. 2017. Decentralized
collaborative learning of personalized models over networks. In International
Conference on Artificial Intelligence and Statistics (AISTATS).

[36] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter
Pietzuch. 2016. Ako: Decentralised Deep Learning with Partial Gradient Exchange.
In Proceedings of the Seventh ACM Symposium on Cloud Computing. ACM, 84–
97.

[37] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R Ganger,
Phillip B Gibbons, Garth A Gibson, and Eric P Xing. 2015. Managed communica-
tion and consistency for fast data-parallel iterative analytics. In Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, 381–394.

[38] Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang
Yu, and Eric Xing. 2016. Distributed Machine Learning via Sufficient Factor
Broadcasting. Conference on Uncertainty in Artificial Intelligence (2016).

[39] Eric P Xing, Michael I Jordan, Stuart Russell, and Andrew Y Ng. 2002. Distance
metric learning with application to clustering with side-information. In Conference
on Neural Information Processing Systems.

[40] Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) (2006).

[41] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In USENIX Symposium on Networked Systems Design and Implementation.

[42] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,
Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017. Poseidon: An
Efficient Communication Architecture for Distributed Deep Learning on GPU
Clusters. USENIX Annual Technical Conference (2017).

	Abstract
	1 Introduction
	1.1 Contributions

	2 Matrix-Parametrized ML Models
	2.1 Sufficient Vectors

	3 System and Algorithm Co-design
	3.1 Programming Model
	3.2 Communication
	3.3 Fault Tolerance
	3.4 Consistency

	4 Implementation
	4.1 Hardware/Software-Aware SV Transfer

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Results
	5.3 Evaluation of Individual Components

	6 Related Works
	7 Conclusions and Discussions
	Acknowledgments
	References

