
IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 1

Petuum: A New Platform for
Distributed Machine Learning on Big Data

Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie,
Abhimanu Kumar, and Yaoliang Yu

Abstract—What is a systematic way to efficiently apply a wide spectrum of advanced ML programs to industrial scale problems, using
Big Models (up to 100s of billions of parameters) on Big Data (up to terabytes or petabytes)? Modern parallelization strategies employ
fine-grained operations and scheduling beyond the classic bulk-synchronous processing paradigm popularized by MapReduce, or even
specialized graph-based execution that relies on graph representations of ML programs. The variety of approaches tends to pull
systems and algorithms design in different directions, and it remains difficult to find a universal platform applicable to a wide range of
ML programs at scale. We propose a general-purpose framework, Petuum, that systematically addresses data- and model-parallel
challenges in large-scale ML, by observing that many ML programs are fundamentally optimization-centric and admit error-tolerant,
iterative-convergent algorithmic solutions. This presents unique opportunities for an integrative system design, such as bounded-error
network synchronization and dynamic scheduling based on ML program structure. We demonstrate the efficacy of these system
designs versus well-known implementations of modern ML algorithms, showing that Petuum allows ML programs to run in much less
time and at considerably larger model sizes, even on modestly-sized compute clusters.

Index Terms—Machine Learning, Big Data, Big Model, Distributed Systems, Theory, Data-Parallelism, Model-Parallelism

F

1 INTRODUCTION

MACHINE Learning (ML) is becoming a primary mech-
anism for extracting information from data. However,

the surging volume of Big Data from Internet activities
and sensory advancements, and the increasing needs for
Big Models for ultra high-dimensional problems have put
tremendous pressure on ML methods to scale beyond a
single machine, due to both space and time bottlenecks.
For example, on the Big Data front, the Clueweb 2012 web
crawl1 contains over 700 million web pages as 27TB of text
data; while photo-sharing sites such as Flickr, Instagram and
Facebook are anecdotally known to possess 10s of billions
of images, again taking up TBs of storage. It is highly
inefficient, if possible, to use such big data sequentially
in a batch or scholastic fashion in a typical iterative ML
algorithm. On the Big Model front, state-of-the-art image
recognition systems have now embraced large-scale deep
learning models with billions of parameters [1]; topic mod-
els with up to 106 topics can cover long-tail semantic word
sets for substantially improved online advertising [2], [3];
and very-high-rank matrix factorization yields improved
prediction on collaborative filtering problems [4]. Training
such big models with a single machine can be prohibitively
slow, if not impossible. While careful model design and
feature engineering can certainly reduce the size of the
model, they require domain-specific expertise and are fairly
labor-intensive, hence the recent appeal (as seen in the above
papers) of building high-capacity Big Models in order to
substitute computation cost for labor cost.

• Qirong Ho is with Institute of Infocomm Research, A*STAR Singapore.
• Eric P. Xing and all other authors are with Carnegie Mellon University’s

School of Computer Science.

Manuscript received March 31, 2015.
1. http://www.lemurproject.org/clueweb12.php/

Despite the recent rapid development of many new ML
models and algorithms aiming at scalable applications [5],
[6], [7], [8], [9], [10], adoption of these technologies remains
generally unseen in the wider data mining, NLP, vision, and
other application communities for big problems, especially
those built on advanced probabilistic or optimization pro-
grams. A likely reason for such a gap, at least from the scal-
able execution point of view, that prevents many state-of-
the-art ML models and algorithms from being more widely
applied at Big-Learning scales is the difficult migration from
an academic implementation, often specialized for a small,
well-controlled computer platform such as desktop PCs and
small lab-clusters, to a big, less predictable platform such as
a corporate cluster or the cloud, where correct execution of
the original programs require careful control and mastery
of low-level details of the distributed environment and re-
sources through highly nontrivial distributed programming.

Many programmable platforms have provided partial so-
lutions to bridge this research-to-production gap: while
Hadoop [11] is a popular and easy to program platform, its
implementation of MapReduce requires the program state
to be written to disk every iteration, thus its performance
on many ML programs has been surpassed by in-memory
alternatives [12], [13]. One such alternative is Spark [12],
which improves upon Hadoop by keeping ML program
state in memory — resulting in large performance gains
over Hadoop — whilst preserving the easy-to-use MapRe-
duce programming interface. However, Spark ML imple-
mentations are often still slower than specially-designed
ML implementations, in part because Spark does not offer
flexible and fine-grained scheduling of computation and
communication, which has been shown to be hugely ad-
vantageous, if not outright necessary, for fast and correct
execution of advanced ML algorithms [14]. Graph-centric

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 2

Fig. 1. The scale of Big ML efforts in recent literature. A key goal
of Petuum is to enable larger ML models to be run on fewer
resources, even relative to highly-specialized implementations.

platforms such as GraphLab [13] and Pregel [15] efficiently
partition graph-based models with built-in scheduling and
consistency mechanisms, but due to limited theoretical
work, it is unclear whether asynchronous graph-based con-
sistency models and scheduling will always yield correct
execution of ML programs. Other systems provide low-
level programming interfaces [16], [17], that, while powerful
and versatile, do not yet offer higher-level general-purpose
building blocks such as scheduling, model partitioning
strategies, and managed communication that are key to
simplifying the adoption of a wide range of ML methods.
In summary, existing systems supporting distributed ML
each manifest a unique tradeoff on efficiency, correctness,
programmability, and generality.

In this paper, we explore the problem of building a
distributed machine learning framework with a new an-
gle toward the efficiency, correctness, programmability, and
generality tradeoff. We observe that, a hallmark of most
(if not all) ML programs is that they are defined by an
explicit objective function over data (e.g., likelihood, error-
loss, graph cut), and the goal is to attain optimality of this
function, in the space defined by the model parameters and
other intermediate variables. Moreover, these algorithms all
bear a common style, in that they resort to an iterative-
convergent procedure (see Eq. 1). It is noteworthy that
iterative-convergent computing tasks are vastly different
from conventional programmatic computing tasks (such
as database queries and keyword extraction), which reach
correct solutions only if every deterministic operation is cor-
rectly executed, and strong consistency is guaranteed on the
intermediate program state — thus, operational objectives
such as fault tolerance and strong consistency are absolutely
necessary. However, an ML program’s true goal is fast,
efficient convergence to an optimal solution, and we argue
that fine-grained fault tolerance and strong consistency are
but one vehicle to achieve this goal, and might not even be
the most efficient one.

We present a new distributed ML framework, Petuum,
built on an ML-centric optimization-theoretic principle, as
opposed to various operational objectives explored ear-
lier. We begin by formalizing ML algorithms as iterative-

convergent programs, which encompass a large space of
modern ML, such as stochastic gradient descent [18] and
coordinate descent [10] for convex optimization problems,
proximal methods [19] for more complex constrained opti-
mization, as well as MCMC [20] and variational inference [7]
for inference in probabilistic models. To our knowledge,
no existing programmable2 platform has considered such
a wide spectrum of ML algorithms, which exhibit diverse
representation abstractions, model and data access patterns,
and synchronization and scheduling requirements. So what
are the shared properties across such a “zoo of ML algo-
rithms”? We believe that the key lies in the recognition
of a clear dichotomy between data (which is conditionally
independent and persistent throughout the algorithm) and
model (which is internally coupled, and is transient before
converging to an optimum). This inspires a simple yet
statistically-rooted bimodal approach to parallelism: data
parallel and model parallel distribution and execution of a big
ML program over a cluster of machines. This data parallel,
model parallel approach keenly exploits the unique statistical
nature of ML algorithms, particularly the following three
properties: (1) Error tolerance — iterative-convergent algo-
rithms are often robust against limited errors in intermediate
calculations; (2) Dynamic structural dependency — dur-
ing execution, the changing correlation strengths between
model parameters are critical to efficient parallelization; (3)
Non-uniform convergence — the number of steps required
for a parameter to converge can be highly skewed across
parameters. The core goal of Petuum is to execute these
iterative updates in a manner that quickly converges to
an optimum of the ML program’s objective function, by
exploiting these three statistical properties of ML, which we
argue are fundamental to efficient large-scale ML in cluster
environments.

This design principle contrasts that of several existing
programmable frameworks discussed earlier. For example,
central to the Spark framework [12] is the principle of
perfect fault tolerance and recovery, supported by a persis-
tent memory architecture (Resilient Distributed Datasets);
whereas central to the GraphLab framework is the princi-
ple of local and global consistency, supported by a vertex
programming model (the Gather-Apply-Scatter abstraction).
While these design principles reflect important aspects of
correct ML algorithm execution — e.g., atomic recoverabil-
ity of each computing step (Spark), or consistency satis-
faction for all subsets of model variables (GraphLab) —
some other important aspects, such as the three statistical
properties discussed above, or perhaps ones that could be
more fundamental and general, and which could open more
room for efficient system designs, remain unexplored.

To exploit these properties, Petuum introduces three
novel system objectives grounded in the aforementioned
key properties of ML programs, in order to accelerate
their convergence at scale: (1) Petuum synchronizes the pa-
rameter states with bounded staleness guarantees, thereby
achieves provably correct outcomes due to the error-tolerant

2. Our discussion is focused on platforms which provide libraries
and tools for writing new ML algorithms. Because programmability is
an important criteria for writing new ML algorithms, we exclude ML
software that does not allow new algorithms to be implemented on top
of them, such as AzureML and Mahout.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 3

nature of ML, but at a much cheaper communication
cost than conventional per-iteration bulk synchronization;
(2) Petuum offers dynamic scheduling policies that take
into account the changing structural dependencies between
model parameters, so as to minimize parallelization error
and synchronization costs; and (3) Since parameters in
ML programs exhibit non-uniform convergence costs (i.e.
different numbers of updates required), Petuum prioritizes
computation towards non-converged model parameters, so
as to achieve faster convergence.

To demonstrate this approach, we show how data-
parallel and model-parallel algorithms can be implemented
on Petuum, allowing them to scale to large data/model sizes
with improved algorithm convergence times. The experi-
ments section provides detailed benchmarks on a range of
ML programs: topic modeling, matrix factorization, deep
learning, Lasso regression, and distance metric learning.
These algorithms are only a subset of the full open-source
Petuum ML library3— the PMLlib, which we will briefly
discuss in this paper. As illustrated in Figure 1, Petuum
PMLlib covers a rich collection of advanced ML methods not
usually seen in existing ML libraries; the Petuum platform
enables PMLlib to solve a range of ML problems at large
scales — scales that have only been previously attempted
in a case-specific manner with corporate-scale efforts and
resources — but using relatively modest clusters (10-100
machines) that are within reach of most ML practitioners.

2 PRELIMINARIES: ON DATA PARALLELISM
AND MODEL PARALLELISM
We begin with a principled formulation of iterative-
convergent ML programs, which exposes a dichotomy of
data and model, that inspires the parallel system architec-
ture (§3), algorithm design (§4), and theoretical analysis (§6)
of Petuum. Consider the following programmatic view of
ML as iterative-convergent programs, driven by an objective
function.
Iterative-Convergent ML Algorithm: Given data D and a
model objective function L (e.g. mean-squared loss, likeli-
hood, margin), a typical ML problem can be grounded as
executing the following update equation iteratively, until
the model state (i.e., parameters and/or latent variables) A
reaches some stopping criteria:

A(t) = F (A(t−1),∆L(A(t−1), D)) (1)

where superscript (t) denotes the iteration counter. The
update function ∆L() (which improves the loss L) performs
computation on data D and model state A, and outputs
intermediate results to be aggregated with the current es-
timate of A by F () to produce the new estimate of A.
For simplicity, in the rest of the paper we omit L in the
subscript with the understanding that all ML programs of
our interest here bear an explicit loss function that can be
used to monitor the quality of convergence to a solution,
as opposed to heuristics or procedures not associated such
a loss function. Also for simplicity, we focus on iterative-
convergent equations with an additive form:

A(t) = A(t−1) + ∆(A(t−1), D), (2)

3. Petuum is available as open source at http://petuum.org.

Data Parallel Model Parallel

~✓t+1 = ~✓t + �f
~✓(D)

�~✓(D1)

�~✓(D2) �~✓(D3)

�~✓(Dn)

D ⌘ {D1, D2, . . . , Dn}

�~✓1(D)

�~✓2(D) �~✓3(D)

�~✓k(D)

~✓ ⌘ [~✓ T
1 , ~✓ T

2 , . . . , ~✓ T
k }T

Di?Dj | ✓, 8i 6= j ~✓i 6? ~✓j | D, 9(i, j)
Fig. 2. The difference between data and model parallelism: data
samples are always conditionally independent given the model,
but some model parameters are not independent of each other.

Data-Parallelism Model-Parallelism

Fig. 3. Conceptual illustration of data and model parallelism.
In data-parallelism, workers are responsible for generating up-
dates ∆() on different data partitions, in order to updated the
(shared) model state. In model-parallelism, workers generate ∆
on different model partitions, possibly using all of the data.

i.e. the aggregation F () is replaced with a simple addition.
The approaches we propose can also be applied to this
general F ().

In large-scale ML, both data D and model A can be
very large. Data-parallelism, in which data is divided across
machines, is a common strategy for solving Big Data prob-
lems, while model-parallelism, which divides the ML model,
is common for Big Models. Both strategies are not exclusive,
and can be combined to tackle challenging problems with
large data D and large model A. Hence, every Petuum
ML program is either data-parallel, model-parallel, or data-
and-model-parallel, depending on problem needs. Below,
we discuss the (different) mathematical implications of each
parallelism (see Figure 2).

2.1 Data Parallelism
In data-parallel ML, the data D is partitioned and assigned
to computational workers (indexed by p = 1..P); we denote
the p-th data partition by Dp. The function ∆() can be
applied to each data partition independently, and the results
combined additively, yielding a data-parallel equation (left
panel of Figure 2):

A(t) = A(t−1) +
∑P
p=1 ∆(A(t−1), Dp). (3)

This form is commonly seen in stochastic gradient descent
or sampling-based algorithms. For example, in distance
metric learning optimized via stochastic gradient descent
(SGD), the data pairs are partitioned over different workers,
and the intermediate results (subgradients) are computed
on each partition, before being summed and applied to

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 4

the model parameters. A slightly modified form, A(t) =∑P
p=1 ∆(A(t−1), Dp), is used by some algorithms, such as

variational EM.
Importantly, this additive updates property allows the up-

dates ∆() to be computed at each local worker before trans-
mission over the network, which is crucial because CPUs
can produce updates ∆() much faster than they can be (in-
dividually) transmitted over the network. Additive updates
are the foundation for a host of techniques to speed up data-
parallel execution, such as minibatch, asynchronous and
bounded-asynchronous execution, and parameter servers.
Key to the validity of additivity of updates from different
workers is the notion of independent and identically distributed
(iid) data, which is assumed for many ML programs, and
implies that each parallel worker contributes “equally” (in a
statistical sense) to the ML algorithm’s progress via ∆(), no
matter which data subset Dp it uses.

2.2 Model Parallelism

In model-parallel ML, the model A is partitioned and as-
signed to workers p = 1..P and updated therein in parallel,
running update functions ∆(). Because the outputs from
each ∆() affect different elements of A (hence denoted now
by ∆p() to make explicit the parameter subset affected at
worker p), they are first concatenated into a full vector of
updates (i.e., the full ∆()), before aggregated with model
parameter vector A (see right panel of Figure 2):

A(t) = A(t−1) + Con

({
∆p(A

(t−1), S(t−1)
p (A(t−1)))

}P
p=1

)
,

(4)
where we have omitted the data D for brevity and clarity.
Coordinate descent algorithms for regression and matrix
factorization are a canonical example of model-parallelism.
Each update function ∆p() also takes a scheduling function
S

(t−1)
p (A), which restricts ∆p() to modify only a carefully-

chosen subset of the model parametersA. S(t−1)
p (A) outputs

a set of indices {j1, j2, . . . , }, so that ∆p() only performs
updates on Aj1 , Aj2 , . . . — we refer to such selection of
model parameters as scheduling. In some cases, the additive
update formula above can be replaced by a replace operator
that directly replaces corresponding elements inAwith ones
in the concatenated update vector.

Unlike data-parallelism which enjoys iid data properties,
the model parameters Aj are not, in general, independent of
each other (Figure 2), and it has been established that model-
parallel algorithms can only be effective if the parallel
updates are restricted to independent (or weakly-correlated)
parameters [10], [13], [21], [22]. Hence, our definition of
model-parallelism includes the global scheduling mechanism
Sp() that can select carefully-chosen parameters for parallel
updating.

The scheduling function S() opens up a large design
space, such as fixed, randomized, or even dynamically-
changing scheduling on the whole space, or a subset of,
the model parameters. S() not only can provide safety and
correctness (e.g., by selecting independent parameters and
thus minimize parallelization error), but can offer substan-
tial speed-up (e.g., by prioritizing computation onto non-
converged parameters). In the Lasso example, Petuum uses
S() to select coefficients that are weakly correlated (thus

preventing divergence), while at the same time prioritizing
coefficients far from zero (which are more likely to be non-
converged).

2.3 Implementing Data- and Model-Parallel Programs
Data- and model-parallel programs exhibit a certain pro-
gramming and systems desiderata: they are stateful, in that
they continually update shared model parameters A. Thus,
an ML platform needs to synchronize A across all running
threads and processes, and this should be done via a high-
performance, non-blocking asynchronous strategy that still
guarantees convergence. If the program is model-parallel,
it may require fine control over the order of parameter
updates, in order to avoid non-convergence due to depen-
dency violations — thus, the ML platform needs to provide
fine-grained scheduling capability. We discuss some of the
difficulties associated with achieving these desiderata.

Data- and model-parallel programs can certainly be writ-
ten in a message-passing style, in which the programmer
explicitly writes code to send and receive parameters over
the network. However, we believe it is more desirable to
provide a Distributed Shared Memory (DSM) abstraction,
in which the programmer simply treats A like a global
program variable, accessible from any thread/process in
a manner similar to single-machine programming — no
explict network code is required from the user, and all
synchronization is done in the background. While DSM-like
interfaces could be added to alternative ML platforms like
Hadoop, Spark and GraphLab, these systems usually oper-
ate in either a bulk synchronous (prone to stragglers and
blocking due to the high rate of update ∆() generation) or
asynchronous (having no parameter consistency guarantee,
and hence no convergence guarantee) fashion.

Model-parallel programs pose an additional challenge,
in that they require fine-grained control over the parallel
ordering of variable updates. Again, while it is completely
possible to achieve such control via message-passing pro-
gramming style, there is nevertheless an opportunity to
provide a simpler abstraction, in which the user merely
has to define the model scheduling function S

(t−1)
p (A). In

such an abstraction, networking and synchronization code
is again hidden from the user. While Hadoop and Spark
provide easy-to-use abstractions, their design does not give
users fine-grained control over the ordering of updates —
for example, MapReduce provides no control over the order
in which mappers or reducers are executed. We note that
GraphLab has a priority-based scheduler specialized for
some model-parallel applications, but still does not expose
a dedicated scheduling function S

(t−1)
p (A). One could cer-

tainly modify Hadoop’s or Spark’s built-in schedulers to
expose the required level of control, but we do not consider
this reasonable for the average ML practitioner without
strong systems expertise.

These considerations make effective data- and model-
parallel programming challenging, and there is an opportu-
nity to abstract them away via a platform that is specifically
focused on data/model-parallel ML.

3 PETUUM – A PLATFORM FOR DISTRIBUTED ML
A core goal of Petuum is to allow practitioners to easily
implement data-parallel and model-parallel ML algorithms.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 5

// Petuum Program Structure

schedule() {
// This is the (optional) scheduling function
// It is executed on the scheduler machines
A_local = PS.get(A) // Parameter server read
PS.inc(A,change) // Can write to PS here if needed
// Choose variables for push() and return
svars = my_scheduling(DATA,A_local)
return svars

}

push(p = worker_id(), svars = schedule()) {
// This is the parallel update function
// It is executed on each of P worker machines
A_local = PS.get(A) // Parameter server read
// Perform computation and send return values to pull()
// Or just write directly to PS
change1 = my_update1(DATA,p,A_local)
change2 = my_update2(DATA,p,A_local)
PS.inc(A,change1) // Parameter server increment
return change2

}

pull(svars=schedule(), updates=(push(1), ..., push(P))) {
// This is the (optional) aggregation function
// It is executed on the scheduler machines
A_local = PS.get(A) // Parameter server read
// Aggregate updates from push(1..P) and write to PS
my_aggregate(A_local,updates)
PS.put(A,change) // Parameter server overwrite

}

Fig. 4. Petuum Program Structure.

Petuum provides APIs to key systems that make data-
and model-parallel programming easier: (1) a parameter
server system, which allows programmers to access global
model state A from any machine via a convenient distributed
shared-memory interface that resembles single-machine pro-
gramming, and adopts a bounded-asychronous consistency
model that preserves data-parallel convergence guarantees,
thus freeing users from explicit network synchronization; (2)
a scheduler, which allows fine-grained control over the paral-
lel ordering of model-parallel updates ∆() — in essence, the
scheduler allows users to define their own ML application
consistency rules.

3.1 Programming Interface
Figure 4 shows pseudocode for a generic Petuum program,
consisting of three user-written functions (in either C++ or
Java): a central scheduler function schedule(), a parallel
update function push() (analogous to Map in MapReduce),
and a central aggregation function pull() (analogous to
Reduce). Data-parallel programs can be written with just
push(), while model-parallel programs are written with all
three functions schedule(), push() and pull().

The model variables A are held in the parameter server,
which can be accessed at any time from any function via
the PS object. The PS object can be accessed from any
function, and has 3 functions: PS.get() to read a param-
eter, PS.inc() to add to a parameter, and PS.put() to
overwrite a parameter. With just these operations, the pa-
rameter server automatically ensures parameter consistency
between all Petuum components; no additional user pro-
gramming is necessary. In the example pseudocode, DATA
is a placeholder for data D; this can be any 3rd-party data
structure, database, or distributed file system.

3.2 Petuum System Design
ML algorithms exhibit several principles that can be ex-
ploited to speed up distributed ML programs: dependency

Sched

Client

Sched

Client

Sched

Client

Scheduler

PS

Client

Worker

PS

Client

PS server

Sched

Client

PS serverWorker

PS

Client

….
ML App Code ML App Code

Consistency

Controller

Consistency

Controller

Dependency/

Priority Mgr.

Network Layer

parameter exchange channel

scheduling control channel

Data
Partition

Data
Partition

Model
Partition

Model
Partition

Scheduling
Data

Fig. 5. Petuum system: scheduler, workers, parameter servers.

Iteration 0 1 2 3 4 5 6 7 8 9

Updates guaranteed
visible to all workers

Worker 1

Worker 2

Worker 3

Staleness s=3

Updates eagerly pushed
out to Worker 1, but not
guaranteed to be visible

Worker 1 is automatically
blocked by the PS system
until worker 2 reaches iter 4

Worker progress

Fig. 6. ESSP consistency model, used by the Parameter Server.
Workers are allowed to run at different speeds, but are pre-
vented from being more than s iterations apart. Updates from
the most recent s iterations are “eagerly” pushed out to workers,
but are not guaranteed to be visible.

structures between parameters, non-uniform convergence of
parameters, and a limited degree of error tolerance [13],
[14], [17], [21], [23], [24]. Through schedule(), push()
and pull(), Petuum allows practitioners to write data-
parallel and model-parallel ML programs that exploit these
principles, and can be scaled to Big Data and Big Model ap-
plications. The Petuum system comprises three components
(Fig. 5): parameter server, scheduler, and workers.

Parameter Server: The parameter server (PS) enables
data-parallelism, by providing users with global read/write
access to model parameters A, via a convenient distributed
shared memory API that is similar to table-based or
key-value stores. The PS API consists of three functions:
PS.get(), PS.inc() and PS.put(). As the names sug-
gest, the first function reads a part of the global A into local
memory, while the latter two add or overwrite local changes
into the global A.

To take advantage of ML error tolerance, the PS imple-
ments the Eager Stale Synchronous Parallel (ESSP) consis-
tency model [14], [23], which reduces network synchroniza-
tion and communication costs, while maintaining bounded-
staleness convergence guarantees implied by ESSP. The
ESSP consistency model ensures that, if a worker reads from
parameter server at iteration c, it will definitely receive all
updates from all workers computed at and before iteration
c − s − 1, where s is a staleness threshold — see Figure 6
for an illustration. In Section 6, we will cover theoretical
guarantees enjoyed by ESSP consistency.

Scheduler: The scheduler system enables model-
parallelism, by allowing users to control which model
parameters are updated by worker machines. This is
performed through a user-defined scheduling function
schedule() (corresponding to S(t−1)

p ()), which outputs a
set of parameters for each worker. The scheduler sends the
identities of these parameters to workers via the scheduling
control channel (Fig. 5), while the actual parameter values
are delivered through the parameter server system. In Sec-

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 6

Scheduler System

All model parameters Prioritize parameters

Model-specific
Dependency Analysis

1

1 2

1 3

2

Worker 1

1

1

1

Worker 2

2 2

Worker 3

3

Fig. 7. Scheduler system. Using algorithm or model-specific
criteria, the Petuum scheduler prioritizes a small subset of pa-
rameters from the full model A. This is followed by a depen-
dency analysis on the prioritized subset: parameters are further
subdivided into groups, where a parameter Ai in group gu is
must be independent of all other parameters Aj in all other
groups gv. This is illustrated as a graph partitioning, although
the implementation need not actually construct a graph.

tion 6, we will discuss the theoretical guarantees enjoyed by
model-parallel schedules.

Several common patterns for schedule design are
worth highlighting: fixed-scheduling (schedule_fix())
dispatches model parameters A in a pre-determined order;
static, round-robin schedules (e.g. repeatedly loop over all
parameters) fit the schedule_fix() model. Dependency-
aware (schedule_dep()) scheduling allows re-ordering
of variable/parameter updates to accelerate model-parallel
ML algorithms, e.g. in Lasso regression, by analyzing the
dependency structure over model parameters A. Finally,
prioritized scheduling (schedule_pri()) exploits uneven
convergence in ML, by prioritizing subsets of variables
Usub ⊂ A according to algorithm-specific criteria, such as
the magnitude of each parameter, or boundary conditions
such as KKT. These common schedules are provided as pre-
implemented software libraries, or users can opt to write
their own schedule().

Workers: Each worker p receives parameters to be
updated from schedule(), and then runs parallel up-
date functions push() (corresponding to ∆()) on data D.
While push() is being executed, the model state A can be
easily synchronized with the parameter server, using the
PS.get() and PS.inc() API. After the workers finish
push(), the scheduler may use the new model state to
generate future scheduling decisions.

Petuum intentionally does not enforce a data abstraction,
so that any data storage system may be used — workers
may read from data loaded into memory, or from disk, or
over a distributed file system or database such as HDFS.
Furthermore, workers may touch the data in any order
desired by the programmer: in data-parallel stochastic al-
gorithms, workers might sample one data point at a time,
while in batch algorithms, workers might instead pass
through all data points in one iteration.

4 PETUUM PARALLEL ALGORITHMS

Now we turn to development of parallel algorithms for
large-scale distributed ML problems, in light of the data and
model parallel principles underlying Petuum. As examples,
we explain how to use Petuum’s programming interface to

implement novel or state-of-the-art versions of the following
4 algorithms: (1) data-parallel Distance Metric Learning,
(2) model-parallel Lasso regression, (3) model-parallel topic
modeling (LDA), and (4) model-parallel Matrix Factoriza-
tion. These algorithms all enjoy significant performance
advantages over the previous state-of-the-art and existing
open-source software, as we will show.

Through pseudocode, it can be seen that Petuum allows
these algorithms to be easily realized on distributed clusters,
without dwelling on low level system programming, or non-
trivial recasting of our ML problems into representations
such as RDDs or vertex programs. Instead our ML problems
can be coded at a high level, more akin to Matlab or R. We
round off with a brief description of how we used Petuum
implement a couple of other ML algorithms.

4.1 Data-Parallel Distance Metric Learning

Let us first consider a large-scale Distance Metric Learning
(DML) problem. DML improves the performance of other
ML programs such as clustering, by allowing domain ex-
perts to incorporate prior knowledge of the form “data
points x, y are similar (or dissimilar)” [25] — for example,
we could enforce that “books about science are different
from books about art”. The output is a distance function
d(x, y) that captures the aforementioned prior knowledge.
Learning a proper distance metric [25], [26] is essential for
many distance based data mining and machine learning
algorithms, such as retrieval, k-means clustering and k-
nearest neighbor (k-NN) classification. DML has not re-
ceived much attention in the Big Data setting, and we are
not aware of any distributed implementations of DML.

The most popular version of DML tries to learn a
Mahalanobis distance matrix M (symmetric and positive-
semidefinite), which can then be used to measure the dis-
tance between two samples D(x, y) = (x − y)TM(x − y).
Given a set of “similar” sample pairs S = {(xi, yi)}|S|i=1, and
a set of “dissimilar” pairsD = {(xi, yi)}|D|i=1, DML learns the
Mahalanobis distance by optimizing

minM
∑

(x,y)∈S
(x− y)TM(x− y)

s.t. (x− y)TM(x− y) ≥ 1,∀(x, y) ∈ D
M � 0

(5)

where M � 0 denotes that M is required to be positive
semidefinite. This optimization problem minimizes the Ma-
halanobis distances between all pairs labeled as similar,
while separating dissimilar pairs with a margin of 1.

In its original form, this optimization problem is dif-
ficult to parallelize due to the constraint set. To create a
data-parallel optimization algorithm and implement it on
Petuum, we shall relax the constraints via slack variables
(similar to SVMs). First, we replace M with LTL, and
introduce slack variables ξ to relax the hard constraint in
Eq.(5), yielding

minL
∑

(x,y)∈S
‖L(x− y)‖2 + λ

∑
(x,y)∈D

ξx,y

s.t. ‖L(x− y)‖2 ≥ 1− ξx,y, ξx,y ≥ 0,∀(x, y) ∈ D
(6)

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 7

// Data-Parallel Distance Metric Learning

schedule() { // Empty, do nothing }

push() {
L_local = PS.get(L) // Bounded-async read from PS
change = 0
for c=1..C // Minibatch size C
(x,y) = draw_similar_pair(DATA)
(a,b) = draw_dissimilar_pair(DATA)
change += DeltaL(L_local,x,y,a,b) // SGD using Eq (8)

PS.inc(L,change/C) // Add gradient to param server
}

pull() { // Empty, do nothing }

Fig. 8. Petuum DML data-parallel pseudocode.

Using hinge loss, the constraint in Eq.(6) can be eliminated,
yielding an unconstrained optimization problem:

minL
∑

(x,y)∈S
‖L(x− y)‖2

+λ
∑

(x,y)∈D
max(0, 1− ‖L(x− y)‖2)

(7)

Unlike the original constrained DML problem, this relax-
ation is fully data-parallel, because it now treats the dissim-
ilar pairs as iid data to the loss function (just like the similar
pairs); hence, it can be solved via data-parallel Stochastic
Gradient Descent (SGD). SGD can be naturally parallelized
over data, and we partition the data pairs onto P machines.
Every iteration, each machine p randomly samples a mini-
batch of similar pairs Sp and dissimilar pairs Dp from its
data shard, and computes the following update to L:

4Lp =
∑

(x,y)∈Sp 2L(x− y)(x− y)T

− ∑
(a,b)∈Dp

2L(a− b)(a− b)T · I(‖L(a− b)‖2 ≤ 1)
(8)

where I(·) is the indicator function.
Figure 8 shows pseudocode for Petuum DML, which

is simple to implement because the parameter server sys-
tem PS abstracts away complex networking code under a
simple get()/read() API. Moreover, the PS automati-
cally ensures high-throughput execution, via a bounded-
asynchronous consistency model (Stale Synchronous Paral-
lel) that can provide workers with stale local copies of the
parametersL, instead of forcing workers to wait for network
communication. Later, we will review the strong consistency
and convergence guarantees provided by the SSP model.

Since DML is a data-parallel algorithm, only the parallel
update push() needs to be implemented (Figure 8). The
scheduling function schedule() is empty (because every
worker touches every model parameter L), and we do not
need aggregation push() for this SGD algorithm. In our
next example, we will show how schedule() and push()
can be used to implement model-parallel execution.

4.2 Model-Parallel Lasso
Lasso is a widely used model to select features in high-
dimensional problems, such as gene-disease association
studies, or in online advertising via `1-penalized regres-
sion [27]. Lasso takes the form of an optimization problem:

minβ `(X, y,β) + λ
∑
j |βj |, (9)

where λ denotes a regularization parameter that determines
the sparsity of β, and `(·) is a non-negative convex loss
function such as squared-loss or logistic-loss; we assume
that X and y are standardized and consider (9) without

// Model-Parallel Lasso

schedule() {
for j=1..J // Update priorities for all params beta_j

c_j = square(beta_j) + eta // Magnitude prioritization
(s_1, ..., s_L’) = random_draw(distrib(c_1, ..., c_J))
// Choose L<L’ pairwise-independent beta_j
(j_1, ..., j_L) = correlation_check(s_1, ..., s_L’)
return (j_1, ..., j_L)

}

correlation_check(s_1, ..., s_L’) {
selection = (s_1)
remaining = (s_2, ..., s_L’)
for i=2..L // Select L parameters which are independent

s = remaining.front()
remaining.delete(s)
correlated = false
for each element j in selection
// In Lasso, parameters s, j are independent if
// their data columns x_s, x_j have dot product
// below a small threshold tau
if dotprod(x[:,s],x[:,j]) > tau
correlated = true

if correlated == false
selection.append(s)

return selection
}

push(p = worker_id(), (j_1, ..., j_L) = schedule()) {
// DATA[p] are row indices of data x,y stored at worker p
(z_p[j_1], ..., z_p[j_L])=partial(DATA[p], j_1, ..., j_L)
return z_p

}

partial(DATA[p], j_1, ..., j_L) {
// Partial comp. for all L beta_j; calls PS.get(beta)
result = ()
for a=1..L

temp = 0
for i in DATA[p]
temp += delta_{i,j_a}ˆ{(t)} // Compute via Eq (10)

result.append(temp)
return result

}

pull((j_1, ..., j_L) = schedule(),
(z_1, ..., z_P) = (push(1), ..., push(P))) {

for a=1..L // Aggregate partial comp from P workers
newval = sum_threshold(z_1[j_a], ..., z_P[j_a])
PS.put(beta[j_a],newval) // Overwrite to PS

}

Fig. 9. Petuum Lasso model-parallel pseudocode.

an intercept. For simplicity but without loss of generality,
we let `(X, y,β) = 1

2 ‖y−Xβ‖22; other loss functions (e.g.
logistic) are straightforward and can be solved using the
same approach [10]. We shall solve this via a coordinate
descent (CD) model-parallel approach, similar but not iden-
tical to [10], [22].

The simplest parallel CD Lasso , shotgun [10], selects
a random subset of parameters to be updated in parallel.
We now present a scheduled model-parallel Lasso that
improves upon shotgun: the Petuum scheduler chooses
parameters that are nearly independent with each other4,
thus guaranteeing convergence of the Lasso objective. In ad-
dition, it prioritizes these parameters based on their distance
to convergence, thus speeding up optimization.

Why is it important to choose independent parame-
ters via scheduling? Parameter dependencies affect the CD
update equation in the following manner: by taking the
gradient of (9), we obtain the CD update for βj :

δ
(t)
ij ← xijyi −

∑
k 6=j xijxikβ

(t−1)
k , (10)

4. In the context of Lasso, this means the data columns x·j corre-
sponding to the chosen parameters j have very small pair-wise dot
product, below a threshold τ .

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 8

// Model-Parallel Topic Model (LDA)

schedule() {
for p=1..P: // "cyclic" schedule
x=(p-1+c) mod P // c is a persistent local variable
j_p = (xM/P,(x+1)M/P) // p’s word range

c=c+1
return (j_1, ..., j_P)

}

push(p = worker_id(), (j_1, ..., j_L) = schedule()) {
V_local = PS.get(V)
[lower,upper] = j_p // Only touch w_ij in word range
for each token z_ij at this worker p:
if w_ij in range(lower,upper):

old = z_ij
new = LDAGibbsSample(U_i, V_local, w_ij, z_ij)
Update U_i with (old, new)
Record old, new values of z_ij in R_p

return R_p
}

LDAGibbsSample(U_i, V_local, w_ij, z_ij) {
// probs is a K-dimensional categorial distribution.
// It can be computed using SparseLDA
// or other collapsed Gibbs samplers for LDA
probs = P(z_{ij} | U, V_local) // Compute using Eq (12)
choice = random_draw(probs)
return choice

}

pull((j_1, ..., j_L) = schedule(),
(R_1, ..., R_P) = (push(1), ..., push(P))) {

Update V with token changes in (R_1, ... ,R_P)
}

Fig. 10. Petuum Topic Model (LDA) model-parallel pseudocode.

β
(t)
j ← S(

∑N
i=1 δ

(t)
ij , λ), (11)

where S(·, λ) is a soft-thresholding operator, defined by
S(βj , λ) ≡ sign(β) (|β| − λ). In (11), if xTj xk 6= 0 (i.e.,
nonzero correlation) and β

(t−1)
j 6= 0 and β

(t−1)
k 6= 0, then

a coupling effect is created between the two features βj and
βk. Hence, they are no longer conditionally independent
given the data: βj 6⊥ βk|X, y. If the j-th and the k-th
coefficients are updated concurrently, parallelization error
may occur, causing the Lasso problem to converge slowly
(or even diverge outright).

Petuum’s schedule(), push() and pull() inter-
face is readily suited to implementing scheduled model-
parallel Lasso. We use schedule() to choose parame-
ters with low dependency, and to prioritize non-converged
parameters. Petuum pipelines schedule() and push();
thus schedule() does not slow down workers running
push(). Furthermore, by separating the scheduling code
schedule() from the core optimization code push() and
pull(), Petuum makes it easy to experiment with complex
scheduling policies that involve prioritization and depen-
dency checking, thus facilitating the implementation of new
model-parallel algorithms — for example, one could use
schedule() to prioritize according to KKT conditions in
a constrained optimization problem, or to perform graph-
based dependency checking like in Graphlab [13]. Later, we
will show that the above Lasso schedule schedule() is
guaranteed to converge, and gives us near optimal solutions
by controlling errors from parallel execution. The pseu-
docode for scheduled model parallel Lasso under Petuum
is shown in Figure 9.

4.3 Topic Model (LDA):

Topic Modeling uncovers semantically-coherent topics from
unstructured document corpora, and is widely used in

industry — e.g. Yahoo’s YahooLDA [28], and Google’s
Rephil [29]. The most well-known member of the topic
modeling family is Latent Dirichlet Allocation (LDA): given
a corpus of N documents and a pre-specified K for number
of topics, the objective of LDA inference is to output K
“topics” (discrete distributions over V unique words in the
corpus), as well as the topic distribution of each document
(a discrete distribution over topics).

One popular LDA inference technique is collapsed Gibbs
sampling, a Markov Chain Monte Carlo algorithm that sam-
ples the topic assignments for each “token” (word position)
in each document until convergence. This is an iterative-
convergent algorithm that repeatedly updates three types
of model state parameters: an M -by-K “word-topic table”
V , an N -by-K “doc-topic” table U , and the token topic
assignments zij . The LDA Gibbs sampler update is

P (zij = k | U, V) ∝ α+Uik

Kα+
∑K

`=1 Ui`
+

β+Vwij,k

Mβ+
∑M

m=1 Vmk
, (12)

where zij are topic assignments to each word “token” wij in
document i. The document word tokens wij , topic assign-
ments zij and doc-topic table rows Ui are partitioned across
worker machines and kept fixed, as is common practice with
Big Data. Although there are multiple parameters, the only
one that is read and updated by all parallel worker (and
hence needs to be globally-stored) is the word-topic table V .

We adopt a model-parallel approach to LDA, and use a
schedule() (Algorithm 10) that cycles rows of the word-
topic table (rows correspond to different words, e.g. “ma-
chine” or “learning”) across machines, to be updated via
push() and pull(); data is kept fixed at each machine.
This schedule() ensures that no two workers will ever
touch the same rows of V in the same iteration5, unlike
previous LDA implementations [28] which allow workers to
update any parameter, resulting in dependency violations.

Note that the function LDAGibbsSample() in push()
can be replaced with any recent state-of-the art Gibbs sam-
pling algorithm, such as the fast Metropolis-Hastings algo-
rithm in LightLDA [3]. Our experiments use the SparseLDA
algorithm [30], to ensure a fair comparison with Ya-
hooLDA [28] (which also uses SparseLDA).

4.4 Matrix Factorization (MF):

MF is used in recommendation, where users’ item pref-
erences are predicted based on other users’ partially ob-
served ratings. The MF algorithm decomposes an incom-
plete observation matrix XN×M into two smaller matrices
W ∈ RK×N and H ∈ RK×M such that WTH ≈ X , where
K � min{M,N} is a user-specified rank:

minW,H
∑

(i,j)∈Ω ||Xij −wT
i hj ||2 +Reg(W,H), (13)

where Reg(W,H) is a regularizer such as the Frobenius
norm, and Ω indexes the observed entries in X . High-rank
decompositions of large matrices provide improved accu-
racy [4], and can be solved by a model-parallel stochastic
gradient approach that ensures workers never touch the

5. Petuum LDA’s “cyclic” schedule differs from the model streaming
in [3]; the latter has workers touch the same set of parameters, one set
at a time. Model streaming can easily be implemented in Petuum, by
changing schedule() to output the same word range for every jp.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 9

// Model-Parallel Matrix Factorization (MF)

schedule() {
// Fugue-style cyclic scheduling
for p=1..P: // workers cycle cols, keep rows fixed
a=(p-1+c) mod P // c is a persistent local variable
j_p = (aM/P,(a+1)M/P) // p’s column range

c=c+1
return (j_1, ..., j_P)

}

push(p = worker_id(), (j_1, ..., j_L) = schedule()) {
[clow,cup] = j_p // Only touch X_ij in these cols
[rlow,rup] = ((p-1)N/P,pN/P) // X_ij in these rows
data = getData(X,rlow,rup,clow,cup) // Submatrix of X
[idx,count] = 0 // Used to iterate over data
while count < limit: // Use exactly "limit" data samples
[i,j,val] = data[idx] // Fetch the next X_ij = val
W_i_local = PS.get(W_i)
H_j_local = PS.get(H_j)
// Upd. W row i
localW[i] += MFRowSGD(i,j,val,W_i_local,H_j_local)
// Upd. H col j
localH[j] += MFColSGD(i,j,val,W_i_local,H_j_local)
idx = (idx+1) mod length(data) // Repeat over data
count += 1

return R_p = (localW,localH)
}

MFRowSGD(i,j,X_ij,W_i,H_j) {
update = [0,...,0] // Length K
for k=1..K
update[k] = deltaW_{ik} // Compute from Eq (14)

return update
}

MFColSGD(i,j,X_ij,W_i,H_j) {
update = [0,...,0] // Length K
for k=1..K
update[k] = deltaH_{kj} // Compute from Eq (15)

return update
}

pull((j_1, ..., j_L) = schedule(),
(R_1, ..., R_P) = (push(1), ..., push(P))) {

for p=1..P:
[localW,localH] = R_p
PS.inc(W,localW)
PS.inc(H,localH)

}

Fig. 11. Petuum MF model-parallel pseudocode.

same elements of W,H in the same iteration. There are two
update equations, for W,H respectively:

δWik =
∑

(a,b)∈Ω

I(a = i) [−2XabHkb + 2Wa·H·bHkb] , (14)

δHkj =
∑

(a,b)∈Ω

I(b = j) [−2XabWak + 2Wa·H·bWak] , (15)

where I() is the indicator function.
Previous systems using this approach [18] exhibited

a load-balancing issue, because the rows of X exhibit a
power-law distribution of non-zero entries; this was the-
oretically solved by the Fugue algorithm implemented on
Hadoop [31], which essentially repeats the available data xij
at each worker to restore load balance. Petuum can imple-
ment Fugue SGD MF as Algorithm 11; we also provide an
Alternating Least Squares implementation for comparison
against other ALS-using systems like Spark and GraphLab.

4.5 Other Algorithms
We have implemented other data- and model-parallel algo-
rithms on Petuum as well. Here, we briefly mention a few
algorithms whose data/model-parallel implementation on
Petuum substantially differs from existing software. Many
other ML algorithms are included in the Petuum open-
source code.

Deep Learning (DL): We implemented two types on
Petuum: a general-purpose fully-connected Deep Neural
Network (DNN) using the cross-entropy loss, and a Con-
volutional Neural Network (CNN) for image classification
based off the open-source Caffe project. We adopt a data-
parallel strategy schedule_fix(), where each worker
uses its data subset to perform updates push() to the
full model A. While this data-parallel strategy could be
amenable to MapReduce, Spark and GraphLab, we are not
aware of DL implementations on those platforms.

Logstic Regression (LR) and Support Vector Machines
(SVM): Petuum implements LR and SVM using the same
dependency-checking, prioritized model-parallel strategy as
the Lasso Algorithm 9. Dependency checking and prioritiza-
tion are not easily implemented on MapReduce and Spark.
While GraphLab has support for these features; the key
difference with Petuum is that Petuum’s scheduler performs
dependency checking on small subsets of parameters at a
time, whereas GraphLab performs graph partitioning on all
parameters at once (which can be costly).

Maximum Entropy Discrimination LDA (MedLDA):
MedLDA [32] is a constrained variant of LDA, that uses side
information to constrain and improve the recovered topics.
Petuum implements MedLDA using a data-parallel strat-
egy schedule_fix(), where each worker uses push()
to alternate between Gibbs sampling (like regular LDA)
and solving for Lagrange multiplers associated with the
constraints.

5 BIG DATA ECOSYSTEM SUPPORT

To support ML at scale in production, academic, or cloud-
compute clusters, Petuum provides a ready-to-run ML li-
brary, called PMLlib; Table 1 shows the current list of
ML applications, with more applications are actively being
developed for future releases. Petuum also integrates with
Hadoop ecosystem modules, thus reducing the engineering
effort required to deploy Petuum in academic and real-
world settings.

Many industrial and academic clusters run Hadoop,
which provides, in addition to the MapReduce program-
ming interface, a job scheduler that allows multiple pro-
grams to run on the same cluster (YARN) and a distributed
filesystem for storing Big Data (HDFS). However, programs
that are written for stand-alone clusters are not compatible
with YARN/HDFS, and vice versa, applications written for
YARN/HDFS are not compatible with stand alone clusters.

Petuum solves this issue by providing common libraries
that work on either Hadoop or non-Hadoop clusters. Hence,
all Petuum PMLlib applications (and new user-written ap-
plications) can be run in stand-alone mode or deployed as
YARN jobs to be scheduled alongside other MapReduce
jobs, and PMLlib applications can also read/write input
data and output results from both the local machine filesys-
tem as well as HDFS. More specifically, Petuum provides a
YARN launcher that will deploy any Petuum application
(including user-written ones) onto a Hadoop cluster; the
YARN launcher will automatically restart failed Petuum
jobs and ensure that they always complete. Petuum also
provides a data access library with C++ iostreams (or Java
file streams) for HDFS access, which allows users to write

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 10

ML Application Problem scale achieved on given cluster size
Topic Model (LDA) 220b params (22m unique words, 10k topics) on 256 cores and 1TB memory

Constrained Topic Model (MedLDA) 610m params (61k unique words, 10k topics, 20 classes) on 16 cores and 128GB memory
Convolutional Neural Networks (CNN) 1b params on 1024 CPU cores and 2TB memory

Fully-connected Deep Neural Networks (DNN) 24m params on 96 CPU cores and 768GB memory
Matrix Factorization (MF) 20m-by-20k input matrix, rank 400 (8b params) on 128 cores and 1TB memory

Non-negative Matrix Factorization (NMF) 20m-by-20k input matrix, rank 50 (1b params) on 128 cores and 1TB memory
Sparse Coding (SC) 1b params on 128 cores and 1TB memory

Logistic Regression (LR) 100m params (50k samples, 2b nonzeros) on 512 cores and 1TB memory
Multi-class Logistic Regression (MLR) 10m params (10 classes, 1m features) on 512 cores and 1TB memory

Lasso Regression 100m params (50k samples, 2b nonzeros) on 512 cores and 1TB memory
Support Vector Machines (SVM) 100m params (50k samples, 2b nonzeros) on 512 cores and 1TB memory
Distance Metric Learning (DML) 441m params (63k samples, 21k feature dimension) on 64 cores and 512GB memory

K-means clustering 1m params (10m samples, 1k feature dimension, 1k clusters) on 32 cores and 256GB memory
Random Forest 8000 trees (2m samples) on 80 cores and 640 GB memory

TABLE 1
Petuum ML Library (PMLlib): ML applications and achievable problem scale for a given cluster size. Petuum’s goal is to solve

large model and data problems using medium-sized clusters with only 10s of machines (100-1000 cores, 1TB+ memory). Running
time varies between 10s of minutes to several days, depending on the application.

(c)(a) (b)

Fig. 12. Key properties of ML algorithms: (a) Non-uniform con-
vergence; (b) Error-tolerant convergence; (c) Dependency struc-
tures amongst variables.
generic file stream code that works on both HDFS files the
local filesystem. The data access library also provides pre-
implemented routines to load common data formats, such
as CSV, libSVM, and sparse matrix.

While Petuum PMLlib applications are written in C++
for maximum performance, new Petuum applications can
be written in either Java or C++; Java has the advantages of
easier deployment and a wider user base.

6 PRINCIPLES AND THEORY
Our iterative-convergent formulation of ML programs, and
the explicit notion of data and model parallelism, make it
convenient to explore three key properties of ML programs
— error-tolerant convergence, non-uniform convergence,
dependency structures (Fig. 12) — and to analyze how
Petuum exploits these properties in a theoretically-sound
manner to speed up ML program completion at Big Learn-
ing scales.

Some of these properties have previously been success-
fully exploited by a number of bespoke, large-scale im-
plementations of popular ML algorithms: e.g. topic mod-
els [3], [17], matrix factorization [33], [34], and deep learn-
ing [1]. It is notable that MapReduce-style systems (such
as Hadoop [11] and Spark [12]) often do not fare com-
petitively against these custom-built ML implementations,
and one of the reasons is that these key ML properties
are difficult to exploit under a MapReduce-like abstraction.
Other abstractions may offer a limited degree of opportunity
— for example, vertex programming [13] permits graph
dependencies to influence model-parallel execution.

6.1 Error tolerant convergence
Data-parallel ML algorithms are often robust against minor
errors in intermediate calculations; as a consequence, they
still execute correctly even when their model parameters

A experience synchronization delays (i.e. the P workers
only see old or stale parameters), provided those delays
are strictly bounded [8], [9], [14], [23], [31], [35]. Petuum
exploits this error-tolerance to reduce network communi-
cation/synchronization overheads substantially, by imple-
menting the Stale Synchronous Parallel (SSP) consistency
model [14], [23] on top of the parameter server system,
which provides all machines with access to parameters A.

The SSP consistency model guarantees that if a worker
reads from parameter server at iteration c, it is guaranteed to
receive all updates from all workers computed at and before
iteration c− s− 1, where s is the staleness threshold. If this
is impossible because some straggling worker is more than
s iterations behind, the reader will stop until the straggler
catches up and sends its updates. For stochastic gradient
descent algorithms (such as the DML program), SSP has
very attractive theoretical properties [14], which we partially
re-state here:
Theorem 1 (adapted from [14]). SGD under SSP, conver-

gence in probability: Let f(x) =
∑T
t=1 ft(x) be a convex

function, where the ft are also convex. We search for
a minimizer x∗ via stochastic gradient descent on each
component ∇ft under SSP, with staleness parameter s
and P workers. Let ut := −ηt∇tft(x̃t) with ηt = η√

t
. Un-

der suitable conditions (ft are L-Lipschitz and bounded
divergence D(x||x′) ≤ F 2), we have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ2

2η̄Tσγ + 2
3ηL

2(2s+ 1)Pτ

}

where R[X] :=
∑T
t=1 ft(x̃t) − f(x∗), and η̄T =

η2L4(lnT+1)
T = o(1) as T →∞.

This theorem has two implications: (1) learning under the
SSP model is correct (like Bulk Synchronous Parallel learn-
ing), because R[X]

T — which is the difference between the
SSP parameter estimate and the true optimum — converges
to O(T−1/2) in probability with an exponential tail-bound;
(2) keeping staleness (i.e. asynchrony) as low as possible im-
proves per-iteration convergence — specifically, the bound
becomes tighter with lower maximum staleness s, and lower
average µγ and variance σγ of the staleness experienced

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 11

by the workers. Conversely, naive asynchronous systems
(e.g. Hogwild! [35] and YahooLDA [28]) may experience
poor convergence, particularly in production environments
where machines may slow down due to other tasks or users.
Such slowdown can cause the maximum staleness s and
staleness variance σγ to become arbitrarily large, leading to
poor convergence rates. In addition to the above theorem
(which bounds the distribution of x), Dai et al. also showed
that the variance of x can be bounded, ensuring reliability
and stability near an optimum [14].

6.2 Dependency structures

Naive parallelization of model-parallel algorithms (e.g. co-
ordinate descent) may lead to uncontrolled parallelization
error and non-convergence, caused by inter-parameter de-
pendencies in the model. The mathematical definition of de-
pendency differs between algorithms and models; examples
include the Markov Blanket structure of graphical models
(explored in GraphLab [13]) and deep neural networks
(partially considered in [5]), or the correlation between data
dimensions in regression problems (explored in [22]).

Such dependencies have been thoroughly analyzed un-
der fixed execution schedules (where each worker updates
the same set of parameters every iteration) [10], [22], [36],
but there has been little research on dynamic schedules that
can react to changing model dependencies or model state A.
Petuum’s scheduler allows users to write dynamic schedul-
ing functions S(t)

p (A(t)) — whose output is a set of model in-
dices {j1, j20, . . . }, telling worker p to update Aj1 , Aj2 , . . .
— as per their application’s needs. This enables ML pro-
grams to analyze dependencies at run time (implemented
via schedule()), and select subsets of independent (or
nearly-independent) parameters for parallel updates.

To motivate this, we consider a generic optimization
problem, which many regularized regression problems —
including the Petuum Lasso example — fit into:
Definition: Regularized Regression Problem (RRP)

min
w∈Rd

f(w) + r(w), (16)

where w is the parameter vector, r(w) =
∑
i r(wi) is

separable and f has β-Lipschitz continuous gradient in the
following sense:

f(w + z) ≤ f(w) + z>∇f(w) + β
2 z
>X>Xz, (17)

where X = [x1, . . . ,xd] are d feature vectors. W.l.o.g.,
we assume that each feature vector xi is normalized, i.e.,
‖xi‖2 = 1, i = 1, . . . , d. Therefore |x>i xj | ≤ 1 for all i, j.

In the regression setting, f(w) represents a least-
squares loss, r(w) represents a separable regularizer (e.g.
`1 penalty), and xi represents the i-th feature column of the
design (data) matrix, each element in xi is a separate data
sample. In particular, |x>i xj | is the correlation between the
i-th and j-th feature columns. The parameters w are simply
the regression coefficients.

In the context of the model-parallel equation (4), we can
map the model A = w, the data D = X , and the update
equation ∆(A,Sp(A)) to

w+
jp
← arg min

z∈R
β
2 [z − (wjp − 1

β gjp)]2 + r(z), (18)

where S
(t)
p (A) has selected a single coordinate jp to be

updated by worker p — thus, P coordinates are updated in
every iteration. The aggregation function F () simply allows
each update wjp to pass through without change.

The effectiveness of parallel coordinate descent depends
on how the schedule S

(t)
p () selects the coordinates jp. In

particular, naive random selection can lead to poor conver-
gence rate or even divergence, with error proportional to the
correlation |x>jaxjb | between the randomly-selected coordi-
nates ja, jb [10], [22]. An effective and cheaply-computable
schedule S(t)

RRP,p() involves randomly proposing a small set
of Q > P features {j1, . . . , jQ}, and then finding P features
in this set such that |x>jaxjb | ≤ θ for some threshold θ, where
ja, jb are any two features in the set of P . This requires at
mostO(B2) evaluations of |x>jaxjb | ≤ θ (if we cannot find P
features that meet the criteria, we simply reduce the degree
of parallelism). We have the following convergence theorem:

Theorem 2. SRRP () convergence: Let ε :=
d(E[P 2]/E[P−1])(ρ−1)

d2 ≈ (E[P−1])(ρ−1)
d < 1, where ρ

is a constant that depends on the input data x and the
scheduler SRRP (). After t steps, we have

E[F (w(t))− F (w?)] ≤ Cdβ

E[P (1− ε)]
1

t
, (19)

where F (w) := f(w) + r(w) and w? is a minimizer of
F . E[P] is the average degree of parallelization over all
iterations — we say “average” to account for situations
where the scheduler cannot select P nearly-independent
parameters (due to high correlation in the data). The
proof for this theorem can be found in the Appendix.
For most real-world data sets, this is not a problem, and
E[P] is equal to the number of workers.

This theorem states that SRRP ()-scheduling (which is used
by Petuum Lasso) achieves close to P -fold (linear) improve-
ment in per-iteration convergence (where P is the number
of workers). This comes from the 1/E[P (1 − ε)] factor on
the RHS of Eq. (19); for input data x that is sparse and
high-dimensional, the SRRP () scheduler will cause ρ − 1
to become close to zero, and therefore ε will also be close to
zero — thus the per-iteration convergence rate is improved
by nearly P -fold. We contrast this against a naive system
that selects coordinates at random; such a system will have
far larger ρ− 1, thus degrading per-iteration convergence.

In addition to asymptotic convergence, we show that
SRRP ’s trajectory is close to ideal parallel execution:

Theorem 3. SRRP () is close to ideal execution: Let Sideal()
be an oracle schedule that always proposes P random
features with zero correlation. Let w(t)

ideal be its parameter
trajectory, and let w(t)

RRP be the parameter trajectory of
SRRP (). Then,

E[|w(t)
ideal −w

(t)
RRP |] ≤

2dPm

(t+ 1)2P̂
L2X>XC, (20)

for constants C,m,L, P̂ . The proof for this theorem can
be found in the Appendix.

This theorem says that the difference between the SRRP ()
parameter estimate wRRP and the ideal oracle estimate
wideal rapidly vanishes, at a fast 1/(t + 1)2 rate. In other

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 12

words, one cannot do much better than SRRP () scheduling
— it is near-optimal.

We close this section by noting that SRRP () is different
from Scherrer et al. [22], who pre-cluster all M features
before starting coordinate descent, in order to find “blocks”
of nearly-independent parameters. In the Big Data and
especially Big Model setting, feature clustering can be pro-
hibitive — fundamentally, it requires O(M2) evaluations
of |x>i xj | for all M2 feature combinations (i, j), and al-
though greedy clustering algorithms can mitigate this to
some extent, feature clustering is still impractical when M
is very large, as seen in some regression problems [27]. The
proposed SRRP () only needs to evaluate a small number of
|x>i xj | every iteration. Furthermore, the random selection
in SRRP () can be replaced with prioritization to exploit non-
uniform convergence in ML problems, as explained next.

6.3 Non-uniform convergence

In model-parallel ML programs, it has been empirically
observed that some parameters Aj can converge in much
fewer/more updates than other parameters [21]. For in-
stance, this happens in Lasso regression because the model
enforces sparsity, so most parameters remain at zero
throughout the algorithm, with low probability of becoming
non-zero again. Prioritizing Lasso parameters according to
their magnitude greatly improves convergence per iteration,
by avoiding frequent (and wasteful) updates to zero param-
eters [21].

We call this non-uniform ML convergence, which can be ex-
ploited via a dynamic scheduling function S(t)

p (A(t)) whose
output changes according to the iteration t — for instance,
we can write a scheduler Smag() that proposes parameters
with probability proportional to their current magnitude
(A

(t)
j)2. This Smag() can be combined with the earlier de-

pendency structure checking, leading to a dependency-aware,
prioritizing scheduler. Unlike the dependency structure issue,
prioritization has not received as much attention in the ML
literature, though it has been used to speed up the PageRank
algorithm, which is iterative-convergent [37].

The prioritizing schedule Smag() can be analyzed in
the context of the Lasso problem. First, we rewrite it by
duplicating the original J features with opposite sign, as
in [10]: F (β) := minβ

1
2 ‖y−Xβ‖22 + λ

∑2J
j=1 βj . Here, X

contains 2J features and βj ≥ 0, for all j = 1, . . . , 2J .

Theorem 4. [Adapted from [21]] Optimality of Lasso
priority scheduler: Suppose B is the set of indices of
coefficients updated in parallel at the t-th iteration, and
ρ is sufficiently small constant such that ρδβ(t)

j δβ
(t)
k ≈ 0,

for all j 6= k ∈ B. Then, the sampling distribution
p(j) ∝ (δβ

(t)
j)2 approximately maximizes a lower bound

on EB[F (β(t))− F (β(t) + δβ(t))].

This theorem shows that a prioritizing scheduler will speed
up Lasso convergence, by decreasing the objective as much
as is theoretically possible every iteration.

In practice, the Petuum scheduler system approximates
p(j) ∝ (δβ

(t)
j)2 with p′(j) ∝ (β

(t−1)
j)2 + η, in order to

allow pipelining of multiple iterations for faster real-time

convergence6. The constant η ensures that all βj ’s have a
non-zero probability of being updated.

7 PERFORMANCE
Petuum’s ML-centric system design supports a variety of
ML programs, and improves their performance on Big Data
in the following senses: (1) Petuum ML implementations
achieve significantly faster convergence rate than well-
optimized single-machine baselines (i.e., DML implemented
on single machine, and Shotgun [10]); (2) Petuum ML
implementations can run faster than other programmable
platforms (e.g. Spark, GraphLab7), because Petuum can
exploit model dependencies, uneven convergence and error
tolerance; (3) Petuum ML implementations can reach larger
model sizes than other programmable platforms, because
Petuum stores ML program variables in a lightweight fash-
ion (on the parameter server and scheduler); (4) for ML
programs without distributed implementations, we can im-
plement them on Petuum and show good scaling with an
increasing number of machines. We emphasize that Petuum
is, for the moment, primarily about allowing ML practition-
ers to implement and experiment with new data/model-
parallel ML algorithms on small-to-medium clusters. Our
experiments are therefore focused on clusters with 10-100
machines, in accordance with our target users.

7.1 Hardware Configuration
To demonstrate that Petuum is adaptable to different hard-
ware generations, our experiments used 3 clusters with
varying specifications: Cluster-1 has up to 128 machines
with 2 AMD cores, 8GB RAM, 1Gbps Ethernet; Cluster-2
has up to 16 machines with 64 AMD cores, 128GB RAM,
40Gbps Infiniband; Cluster-3 has up to 64 machines with 16
Intel cores, 128GB RAM, 10Gbps Ethernet.

7.2 Parameter Server and Scheduler Performance
Petuum’s Parameter Server (PS) and Scheduler speed up ex-
isting ML algorithms by improving iteration throughput and
iteration quality respectively. We measure iteration through-
put as “iterations executed per second”, and we quantify
iteration quality by plotting the ML objective function L
against iteration number — “objective progress per itera-
tion”. In either case, the goal is to improve the ML al-
gorithm’s real-time convergence rate, quantified by plot-
ting the objective function L against real time (“objective
progress per second”).

Parameter Server (PS): We consider how the PS im-
proves iteration throughput (through the Eager SSP consis-
tency model), evaluated using PLMlib’s Matrix Factoriza-
tion with the schedule() function disabled (in order to re-
move the beneficial effect of scheduling, so we may focus on
the PS). This experiment was conducted using 64 Cluster-3
machines on a 332GB sparse matrix (7.7m by 288k entries,
26b nonzeros, created by duplicating the Netflix dataset
16 times horizontally and 16 times vertically). We compare

6. Without this approximation, pipelining is impossible because δβ(t)
j

is unavailable until all computations on β(t)
j have finished.

7. We omit Hadoop and Mahout, as it is already well-established that
Spark and GraphLab significantly outperform it [12], [13].

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 13

Fig. 13. Performance increase in ML applications due to the
Petuum Parameter Server (PS) and Scheduler. The Eager
Stale Synchronous Parallel (ESSP) consistency model (on the
PS) improves the number of iterations executed per second
(throughput) while maintaining per-iteration quality. Prioritized,
dependency-aware scheduling allows the Scheduler to improve
the quality of each iteration, while maintaining iteration through-
put. In both cases, overall real-time convergence rate is im-
proved — 30% improvement for the PS Matrix Factorization
example, and several orders of magnitude for the Scheduler
Lasso example.

the performance of MF running under Petuum PS’s Eager
SSP mode (using staleness s = 2; higher staleness values
did not produce additional benefit), versus running under
MapReduce-style Bulk Synchronous Parallel (BSP) mode.
Figure 13 shows that ESSP provides a 30% improvement
to iteration throughput (top left), without a significantly
affecting iteration quality (top right). Consequently, the MF
application converges 30% faster in real time (middle left).

The iteration throughput improvement occurs because
ESSP allows both gradient computation and inter-worker
communication to occur at the same time, whereas classic
BSP execution requires computation and communication
to alternate in a mutually exclusive manner. Because the
maximum staleness s = 2 is small, and because ESSP
eagerly pushes parameter updates as soon as they are avail-
able, there is almost no penalty to iteration quality despite
allowing staleness.

Scheduler: We examine how the Scheduler improves
iteration quality (through a well-designed schedule()
function), evaluated using PMLlib’s Lasso application. This
experiment was conducted using 16 Cluster-2 on a simu-
lated 150GB sparse dataset (50m features); adjacent features
in the dataset are highly correlated in order to simulate
the effects of realistic feature engineering. We compare the
original PMLlib Lasso (whose schedule() performs pri-

0

1

2

3

4

5

6

LDA Matrix Fact.

R
e

la
ti

ve
 S

p
e

e
d

u
p

Platforms vs Petuum

P
e

tu
u

m

G
ra

p
h

La
b

 (
o

u
t

o
f

m
e

m
o

ry
)

P
et

u
u

m

Y
ah

o
o

LD
A

G
ra

p
h

La
b

 (
o

u
t

o
f

m
em

o
ry

)

Sp
ar

k

0

0.5

1

1.5

2

2.5

3

3.5

4

Deep Learning: CNN Distance Metric Learning

R
e

la
ti

ve
 S

p
e

e
d

u
p

Single-machine vs Petuum
Ideal Linear Speedup

P
e

tu
u

m
 C

af
fe

 4
 m

ac
h

O
ri

gi
n

al
 C

af
fe

 1
 m

ac
h

P
e

tu
u

m
 D

M
L

4
 m

ac
h

X
in

g2
0

0
2

 1
 m

ac
h

Fig. 14. Left: Petuum relative speedup vs popular platforms
(larger is better). Across ML programs, Petuum is at least 2-
10 times faster than popular implementations. Right: Petuum
allows single-machine algorithms to be transformed into cluster
versions, while still achieving near-linear speedup with increas-
ing number of machines (Caffe CNN and DML).

oritization and dependency checking) to a simpler version
whose schedule() selects parameters at random (the shot-
gun algorithm [10]). Figure 13 shows that PMLlib Lasso’s
schedule() slightly decreases iteration throughput (mid-
dle right), but greatly improves iteration quality (bottom
left), resulting in several orders of magnitude improvement
to real-time convergence (bottom right).

The iteration quality improvement is mostly due to
prioritization; we note that without prioritization, 85% of
the parameters would converge within 5 iterations, but the
remaining 15% would take over 100 iterations. Moreover,
prioritization alone is not enough to achieve fast conver-
gence speed — when we repeated the experiment with a
prioritization-only schedule() (not shown), the parame-
ters became unstable, which caused the objective function to
diverged. This is because dependency checking is necessary
to avoid correlation effects in Lasso (discussed in the proof
to Theorem 2), which we observed were greatly amplified
under the prioritization-only schedule().

7.3 Comparison to Programmable Platforms

Figure 14 (left) compares Petuum to popular platforms for
writing new ML programs (Spark v1.2 and GraphLab),
as well as a well-known cluster implementation of LDA
(YahooLDA). We compared Petuum to Spark, GraphLab
and YahooLDA on two applications: LDA and MF. We
ran LDA on 128 Cluster-1 machines, using 3.9m English
Wikipedia abstracts with unigram (V = 2.5m) and bigram
(V = 21.8m) vocabularies; the bigram vocabulary is an
example of feature engineering to improve performance at
the cost of additional computation. The MF comparison
was performed on 10 Cluster-2 machines using the original
Netflix dataset.

Speed: For MF and LDA, Petuum is between 2-6
times faster than other platforms (Figures 14, 15). For MF,
Petuum uses the same model-parallel approach as Spark
and GraphLab, but it performs twice as fast as Spark,
while GraphLab ran out of memory (due to the need to
construct an explicit graph representation, which consumes
significant memory). On the other hand, Petuum LDA is
nearly 6 times faster than YahooLDA; the speedup mostly
comes from the Petuum LDA schedule() (Figure 10),
which performs correct model-parallel execution by only
allowing each worker to operate on disjoint parts of the
vocabulary. This is similar to GraphLab’s implementation,

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 14

Fig. 15. Left: LDA convergence time: Petuum vs YahooLDA
(lower is better). Petuum’s data-and-model-parallel LDA con-
verges faster than YahooLDA’s data-parallel-only implementa-
tion, and scales to more LDA parameters (larger vocab size,
number of topics). Right panels: Matrix Factorization conver-
gence time: Petuum vs GraphLab vs Spark. Petuum is fastest
and the most memory-efficient, and is the only platform that
could handle Big MF models with rank K ≥ 1000 on the given
hardware budget.

0.65	
0.7	
0.75	
0.8	
0.85	
0.9	
0.95	

1	
1.05	

0	 200	 400	 600	 800	 1000	

O
bj
ec
&v

e	

Time	 (second)	

Petuum	 Distance	 Metric	 Learning	

1	 machine	

2	 machines	

3	 machines	

4	 machines	

Fig. 16. Petuum DML objective vs time convergence curves, from
1 to 4 machines.

but is far more memory-efficient because Petuum does not
need to construct a full graph representation of the problem.

Model Size: We show that Petuum supports larger ML
models for the same amount of cluster memory. Figure 15
shows ML program running time versus model size, given
a fixed number of machines — the left panel compares
Petuum LDA and YahooLDA; PetuumLDA converges faster
and supports LDA models that are > 10 times larger8, al-
lowing long-tail topics to be captured. The right panels com-
pare Petuum MF versus Spark and GraphLab; again Petuum
is faster and supports much larger MF models (higher
rank) than either baseline. Petuum’s model scalability comes
from two factors: (1) model-parallelism, which divides the
model across machines; (2) a lightweight parameter server
system with minimal storage overhead. In contrast, Spark
and GraphLab have additional overheads that may not be
necessary in an ML context — Spark needs to construct
a “lineage graph” in order to preserve its strict fault re-
covery guarantees, while GraphLab needs to represent the
ML problem in graph form. Because ML applications are
error-tolerant, fault recovery can be performed with lower
overhead through periodic checkpointing.

7.4 Fast Cluster Implementations of New ML Programs

Petuum facilitates the development of new ML programs
without existing cluster implementations; here we present
two case studies. The first is a cluster version of the open-
source Caffe CNN toolkit, created by adding ∼ 600 lines of
Petuum code. The basic data-parallel strategy in Caffe was
left unchanged, so the Petuum port directly tests Petuum’s
efficiency. We tested on 4 Cluster-3 machines, using a 250k

8. LDA model size is equal to vocab size times number of topics.

subset of Imagenet with 200 classes, and 1.3m model param-
eters. Compared to the original single-machine Caffe (which
does not have the overhead of network communication),
Petuum approaches linear speedup (3.1-times speedup on 4
machines, Figure 14 right plot) due to the parameter server’s
ESSP consistency for managing network communication.

Second, we compare the Petuum DML program against
the original DML algorithm proposed in [25] (denoted by
Xing2002), implemented using SGD on a single machine
(with parallelization over matrix operations). The intent is
to show that, even for ML algorithms that have received
less research attention towards scalability (such as DML),
one can still implement a reasonably simple data-parallel
SGD algorithm on Petuum, and enjoy the benefits of par-
allelization over a cluster. The DML experiment was run
on 4 Cluster-2 machines, using the 1-million-sample Ima-
genet [38] dataset with 1000 classes (21.5k-by-21.5k matrix
with 220m model parameters), and 200m similar/dissimilar
statements. The Petuum DML implementation converges
3.8 times faster than Xing2002 on 4 machines (Figure 14,
right plot). We also evaluated Petuum DML’s convergence
speed on 1-4 machines (Figure 16) — compared to using 1
machine, Petuum DML achieves 3.8 times speedup with 4
machines and 1.9 times speedup with 2 machines.

8 SUMMARY AND FUTURE WORK

Petuum provides ML practitioners with an ML library and
ML programming platform, capable of handling Big Data
and Big ML Models with performance that is competitive
with specialized implementations, while running on rea-
sonable cluster sizes (10-100 machines). This is made pos-
sible by systematically exploiting the unique properties of
iterative-convergent ML algorithms — error tolerance, de-
pendency structures and uneven convergence; these proper-
ties have yet to be thoroughly explored in general-purpose
Big Data platforms such as Hadoop and Spark.

In terms of feature set, Petuum is still relatively imma-
ture compared to Hadoop and Spark, and lacks the follow-
ing: fault recovery from partial program state (critical for
scaling to 1000+ machines), ability to adjust resource usage
on-the-fly in running jobs, scheduling jobs for multiple
users (multi-tenancy), a unified data interface that closely
integrates with databases and distributed file systems, and
support for interactive scripting languages such as Python
and R. The lack of these features imposes a barrier to entry
for new users, and future work on Petuum will address
these issues — but in a manner consistent with Petuum’s
focus on iterative-convergent ML properties. For example,
fault recovery in ML does not require perfect, synchronous
checkpoints (used in Hadoop and Spark); instead, check-
points with ESSP-style bounded error consistency can be
used. This in turn opens up new ways to achieve on-the-fly
resource adjustment and multi-tenancy.

ACKNOWLEDGMENTS

This work is supported in part by DARPA FA87501220324,
and NSF IIS1447676 grants to Eric P. Xing.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 15

APPENDIX

PROOF OF THEOREM 2
We prove that the Petuum SRRP () scheduler makes the Reg-
ularized Regression Problem converge. We note that SRRP ()
has the following properties: (1) the scheduler uniformly
randomly selects Q out of d coordinates (where d is the
number of features); (2) the scheduler performs dependency
checking and retains P out of Q coordinates; (3) in parallel,
each of the P workers is assigned one coordinate, and
performs coordinate descent on it:

w+
jp
← arg min

z∈R
β
2 [z − (wjp − 1

β gjp)]2 + r(z), (21)

where gj = ∇jf(w) is the j-th partial derivative, and the
coordinate jp is assigned to the p-th worker. Note that (21)
is simply the gradient update: w ← w − 1

β g, followed by
applying the proximity operator of r.

As we just noted, SRRP () scheduling selects P coordi-
nates out ofQ by performing dependency checking: effectively,
the scheduler will put coordinates i and j into the same
“block” iff |x>i xj | ≤ θ for some “correlation threshold”
θ ∈ (0, 1). The idea is that coordinates in the same block will
never be updated in parallel; the algorithm must choose the
P coordinates from P distinct blocks. In order to analyze
the effectiveness of this procedure, we will consider the
following matrix:

∀i, Aii = 1, ∀i 6= j, Aij =

{
x>i xj , if |x>i xj | ≤ θ
0, otherwise

. (22)

This matrix A captures the impact of grouping coordinates
into blocks, and its spectral radius ρ = ρ(A) will be used to
show that scheduling entails a nearly P -fold improvement
in convergence with P processors. A simple bound for the
spectral radius ρ(A) is:

|ρ− 1| ≤
∑
j 6=i
|Aij | ≤ (d− 1)θ. (23)

SRRP () scheduling sets the correlation threshold θ to a
small constant, causing the spectral radius ρ to also be
small (which will lead to a nearly P -fold improvement in
per-iteration convergence rate). We contrast SRRP () with
random shotgun-style [10] scheduling, which is equivalent
to setting θ = 1; this causes ρ to become large, which will
degrade the per-iteration convergence rate.

Finally, let N denote the number of pairs (i, j) that pass
the dependency check |x>i xj | ≤ θ. In high-dimensional
problems with over 100 million dimensions, it is often the
case that N ≈ d2, because each coordinate i is unlikely to
be correlated with more than a few other coordinates j. We
therefore assume N ≈ d2 for our analysis. We note that
P , the number of coordinates selected for parallel update
by the scheduler, is a random variable (because it may not
always be possible to select P independent coordinates).
Our analysis therefore considers the expected value E[P].
We are now ready to prove Theorem 2:
Theorem 2: Let ε := d(E[P 2]/E[P−1])(ρ−1)

N ≈ (E[P−1])(ρ−1)
d <

1, then after t steps, we have

E[F (w(t))− F (w?)] ≤ Cdβ

E[P (1− ε)]
1

t
, (24)

where F (w) := f(w) + r(w) and w? denotes a (global)
minimizer of F (whose existence is assumed for simplicity).
Proof of Theorem 2: We first bound the algorithm’s progress
at step t. To avoid cumbersome double indices, let w = wt

and z = wt+1. Then, by applying (17), we have

E[F (z)− F (w)]

≤ E
[P∑
p=1

gjp(w+
jp
− wjp) + r(w+

jp
)− r(wjp)

+
β

2
(w+

jp
− wjp)2 +

β

2

∑
p 6=q

(w+
jp
− wjp)(w+

jq
− wjq)x>jpxjq

]

=
E[P]

d

[
g>(w+ −w) + r(w+)− r(w) +

β

2
‖w+ −w‖22

]
+

βE[P (P − 1)]

2N
(w+ −w)>(A− I)(w+ −w)

≤ −βE[P]

2d
‖w+ −w‖22 +

βE[P (P − 1)](ρ− 1)

2N
‖w+ −w‖22

≤ −βE[P (1− ε)]
2d

‖w+ −w‖22,

where we define ε = d(E[P 2]/E[P−1])(ρ−1)
N , and the second

inequality follows from the optimality of w+ as defined in
(21). Therefore as long as ε < 1, the algorithm is decreasing
the objective. This in turn puts a limit on the maximum
number of parallel workers, which is inversely proportional
to the spectral radius ρ.

The rest of the proof follows the same line as the shotgun
paper [10]. Briefly, consider the case where 0 ∈ ∂r(wt), then

F (wt+1)−F (w?) ≤ (wt+1−w?)>g ≤ ‖wt+1−w?‖2 ·‖g‖2,
and ‖wt+1−wt‖22 = ‖g‖22/β2. Thus, defining δt = F (wt)−
F (w?), we have

E(δt+1 − δt) ≤ −
E[P (1− ε)]

2dβ‖wt+1 −w?‖22
E(δ2

t+1) (25)

≤ − E[P (1− ε)]
2dβ‖wt+1 −w?‖22

[E(δt+1)]2. (26)

Using induction it follows that E(δt) ≤ Cdβ
E[P (1−ε)]

1
t for some

universal constant C . �
The theorem confirms two intuitions: The larger the

number of selected coordinates E[P] (i.e. more parallel
workers), the faster the algorithm converges per-iteration;
however, this also increases ε, demonstrating a tradeoff
between parallelization and correctness. Also, the smaller
the varianceE[P 2], the faster the algorithm converges (since
ε is proportional to it).
Remark: We compare Theorem 2 with Shotgun [10] and the
Block greedy algorithm in [22]. The convergence rate we
get is similar to shotgun, but with a significant difference:
Our spectral radius ρ = ρ(A) is potentially much smaller
than shotgun’s ρ(X>X), since by partitioning we zero out
all entries in the correlation matrix X>X that are bigger
than the threshold θ. In other words, we get to control the
spectral radius while shotgun is totally passive.

The convergence rate in [22] is CB
P (1−ε′)

1
t , where ε′ =

(P−1)(ρ′−1)
B−1 . Compared with ours, we have a bigger (hence

worse) numerator (d vs.B) but the denominator (ε′ vs. ε) are
not directly comparable: we have a bigger spectral radius

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 16

ρ and bigger d while [22] has a smaller spectral radius ρ′

(essentially taking a submatrix of our A) and smaller B − 1.
Nevertheless, we note that [22] may have a higher per-step
complexity: each worker needs to check all of its assigned
τ coordinates just to update one “optimal” coordinate. In
contrast, we simply pick a random coordinate, and hence
can be much cheaper per-step.

PROOF OF THEOREM 3
For the Regularized Regression Problem, we prove that the
Petuum SRRP () scheduler produces a solution trajectory
w

(t)
RRP that is close to ideal execution:

Theorem 3: (SRRP () is close to ideal execution) Let Sideal()
be an oracle schedule that always proposes P random
features with zero correlation. Let w

(t)
ideal be its parameter

trajectory, and let w
(t)
RRP be the parameter trajectory of

SRRP (). Then,

E[|w(t)
ideal −w

(t)
RRP |] ≤

2JPm

(T + 1)2P̂
L2XTXC, (27)

C is a data dependent constant, m is the strong convexity
constant, L is the domain width ofAj , and P̂ is the expected
number of indexes that SRRP () can actually parallelize in
each iteration (since it may not be possible to find P nearly-
independent parameters).

We assume that the objective function F (w) = f(w) +
r(w) is strongly convex — for certain problems, this can
be achieved through parameter replication, e.g. minw

1
2 ||y−

Xw||22 + λ
∑2M
j=1 wj is the replicated form of Lasso regres-

sion seen in Shotgun [10].
Lemma 1: The difference between successive updates is:

F (w + ∆w)− F (w) ≤ −(∆w)T∆w +
1

2
(∆w)TXTX∆w

(28)
Proof of Lemma 1: The Taylor expansion of F (w + ∆w)
around w coupled with the fact that F (w)

′′′
(3rd-order) and

higher order derivatives are zero leads to the above result.
�
Proof of Theorem 3: By using Lemma 1, and telescoping
sum:

F (w
(T)
ideal)− F (w

(0)
ideal) =

T∑
t=1

−(∆w
(t)
ideal)

>∆w
(t)
ideal +

1

2
(∆w

(t)
ideal)

>X>X∆w
(t)
ideal

(29)

Since Sideal chooses P features with 0 correlation,

F (w
(T)
ideal)− F (w

(0)
ideal) =

T∑
t=1

−(∆w
(t)
ideal)

>∆w
(t)
ideal

Again using Lemma 1, and telescoping sum:

F (w
(T)
RRP)− F (w

(0)
RRP) =

T∑
t=1

−(∆w
(t)
RRP)>∆w

(t)
RRP +

1

2
(∆w

(t)
RRP)>X>X∆w

(t)
RRP

(30)

Taking the difference of the two sequences, we have:

F (w
(T)
ideal)− F (w

(T)
RRP) =(

T∑
t=1

−(∆w
(t)
ideal)

>∆w
(t)
ideal

)

−
(

T∑
t=1

−(∆w
(t)
RRP)>∆w

(t)
RRP +

1

2
(∆w

(t)
RRP)>X>X∆w

(t)
RRP

)
(31)

Taking expectations w.r.t. the randomness in iteration, in-
dices chosen at each iteration, and the inherent randomness
in the two sequences, we have:

E[|F (w
(T)
ideal)− F (w

(T)
RRP)|] =

E[|(
T∑
t=1

−(∆w
(t)
ideal)

T∆w
(t)
ideal)

− (
T∑
t=1

−(∆w
(t)
RRP)T∆w

(t)
RRP +

1

2
(∆w

(t)
RRP)>X>X∆w

(t)
RRP)|]

= (Cdata +
1

2
)E[|

T∑
t=1

(∆w
(t)
RRP)>X>X∆w

(t)
RRP)|], (32)

where Cdata is a data dependent constant. Here, the differ-
ence between (∆w

(t)
ideal)

>∆w
(t)
ideal and (∆w

(t)
RRP)>∆w

(t)
RRP

can only be possible due to (∆w
(t)
RRP)>X>X∆w

(t)
RRP .

Following the proof in the shotgun paper [10], we get

E[|F (w
(t)
ideal)− F (w

(t)
RRP)|] ≤ 2dP

(t+ 1)2P̂
L2X>XC, (33)

where d is the length of w (number of features), C is a
data dependent constant, L is the domain width of wj

(i.e. the difference between its maximum and minimum
possible values), and P̂ is the expected number of indexes
that SRRP () can actually parallelize in each iteration.

Finally, we apply the strong convexity assumption to get

E[|w(t)
ideal −w

(t)
RRP |] ≤

2dPm

(t+ 1)2P̂
L2X>XC, (34)

where m is the strong convexity constant. �

REFERENCES

[1] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado,
J. Dean, and A. Ng, “Building high-level features using large scale
unsupervised learning,” in ICML, 2012.

[2] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang, Y. Gao,
J. Zeng, Q. Yang et al., “Towards topic modeling for big data,”
arXiv preprint arXiv:1405.4402, 2014.

[3] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.-Y. Liu,
and W.-Y. Ma, “Lightlda: Big topic models on modest compute
clusters,” in Accepted to International World Wide Web Conference,
2015.

[4] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale
parallel collaborative filtering for the netflix prize,” in Algorithmic
Aspects in Information and Management, 2008.

[5] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng, “Large scale
distributed deep networks,” in NIPS 2012, 2012.

[6] S. A. Williamson, A. Dubey, and E. P. Xing, “Parallel markov chain
monte carlo for nonparametric mixture models,” in ICML, 2013.

[7] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” JMLR, vol. 14, 2013.

[8] M. Zinkevich, J. Langford, and A. J. Smola, “Slow learners are
fast,” in NIPS, 2009.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, MARCH 2015 17

[9] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in NIPS, 2011.

[10] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, “Parallel
coordinate descent for l1-regularized loss minimization,” in ICML,
2011.

[11] T. White, Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.
[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-

ica, “Spark: cluster computing with working sets,” in HotCloud,
2010.

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud,” PVLDB, 2012.

[14] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing, “High-
performance distributed ml at scale through parameter server
consistency models,” in AAAI, 2015.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in ACM SIGMOD International Conference on
Management of data. ACM, 2010.

[16] R. Power and J. Li, “Piccolo: building fast, distributed programs
with partitioned tables,” in OSDI. USENIX Association, 2010.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in OSDI, 2014.

[18] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis,
“Large-scale matrix factorization with distributed stochastic
gradient descent,” in KDD, 2011. [Online]. Available: http:
//doi.acm.org/10.1145/2020408.2020426

[19] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. Xing, “Smoothing
proximal gradient method for general structured sparse learning,”
in UAI, 2011.

[20] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” PNAS,
vol. 101, no. Suppl 1, pp. 5228–5235, 2004.

[21] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing,
“On model parallelism and scheduling strategies for distributed
machine learning,” in NIPS, 2014.

[22] C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin, “Fea-
ture clustering for accelerating parallel coordinate descent,” NIPS,
2012.

[23] Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ml via a
stale synchronous parallel parameter server,” in NIPS, 2013.

[24] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritized iterative computations,” in SOCC, 2011.

[25] E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng, “Distance metric
learning with application to clustering with side-information,” in
Advances in neural information processing systems, 2002, pp. 505–512.

[26] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 209–216.

[27] H. B. M. et. al., “Ad click prediction: a view from the trenches,” in
KDD, 2013.

[28] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J.
Smola, “Scalable inference in latent variable models,” in WSDM,
2012.

[29] K. P. Murphy, Machine learning: a probabilistic perspective, Cam-
bridge, MA, 2012.

[30] L. Yao, D. Mimno, and A. McCallum, “Efficient methods for
topic model inference on streaming document collections,” in
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’09. New York,
NY, USA: ACM, 2009, pp. 937–946.

[31] A. Kumar, A. Beutel, Q. Ho, and E. P. Xing, “Fugue: Slow-worker-
agnostic distributed learning for big models on big data,” in
AISTATS.

[32] J. Zhu, X. Zheng, L. Zhou, and B. Zhang, “Scalable inference
in max-margin topic models,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2013, pp. 964–972.

[33] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon, “Scalable coordinate de-
scent approaches to parallel matrix factorization for recommender
systems,” in Data Mining (ICDM), 2012 IEEE 12th International
Conference on. IEEE, 2012, pp. 765–774.

[34] A. Kumar, A. Beutel, Q. Ho, and E. P. Xing, “Fugue: Slow-worker-
agnostic distributed learning for big models on big data,” in
Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, 2014, pp. 531–539.

[35] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” in NIPS,
2011.

[36] P. Richtárik and M. Takáč, “Parallel coordinate descent methods
for big data optimization,” arXiv preprint arXiv:1212.0873, 2012.

[37] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritizing iterative computations,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 24, no. 9, pp. 1884–
1893, 2013.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009, pp. 248–255.

Eric P. Xing Dr. Eric Xing is a Professor of
Machine Learning in the School of Computer
Science at Carnegie Mellon University, and the
director of the CMU Center for Machine Learning
and Health. His principal research interests lie in
the development of machine learning and sta-
tistical methodology; especially for solving prob-
lems involving automated learning, reasoning,
and decision-making in high-dimensional, mul-
timodal, and dynamic possible worlds in social
and biological systems. Professor Xing received

a Ph.D. in Molecular Biology from Rutgers University, and another Ph.D.
in Computer Science from UC Berkeley. His current work involves,
1) foundations of statistical learning, including theory and algorithms
for estimating time/space varying-coefficient models, sparse structured
input/output models, and nonparametric Bayesian models; 2) framework
for parallel machine learning on big data with big model in distributed
systems or in the cloud; 3) computational and statistical analysis of
gene regulation, genetic variation, and disease associations; and 4)
application of machine learning in social networks, natural language
processing, and computer vision. He is an associate editor of the Annals
of Applied Statistics (AOAS), the Journal of American Statistical Asso-
ciation (JASA), the IEEE Transaction of Pattern Analysis and Machine
Intelligence (PAMI), the PLoS Journal of Computational Biology, and an
Action Editor of the Machine Learning Journal (MLJ), the Journal of
Machine Learning Research (JMLR). He is a member of the DARPA
Information Science and Technology (ISAT) Advisory Group, and a
Program Chair of ICML 2014.

Qirong Ho Dr. Qirong Ho is a scientist at the
Institute for Infocomm Research, A*STAR, Sin-
gapore, and an adjunct assistant professor at
the Singapore Management University School of
Information Systems. His primary research focus
is distributed cluster software systems for Ma-
chine Learning at Big Data scales, with a view to-
wards correctness and performance guarantees.
In addition, Dr. Ho has performed research on
statistical models for large-scale network analy-
sis — particularly latent space models for visu-

alization, community detection, user personalization and interest pre-
diction — as well as social media analysis on hyperlinked documents
with text and network data. Dr. Ho received his PhD in 2014, under Eric
P. Xing at Carnegie Mellon University’s Machine Learning Department.
He is a recipient of the Singapore A*STAR National Science Search
Undergraduate and PhD fellowships.

