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Figure 1: Example results by our Zero-shot image Manipulation Network (ZM-Net) that can manipulate images guided by any personal-
ized signals in real-time. Row 2: zero-shot style transfer guided by different landscape paintings from Row 1. Row 3: image manipulation
conditioned on descriptive attributes; from left to right are descriptive attributes, the input image, and the 5 transformed images corre-
sponding to the text ‘noon’, ‘afternoon’, ‘morning’, 0.5‘morning’ + 0.5‘night’, and ‘night’, respectively.

Abstract
Many problems in image processing and computer vision

(e.g. colorization, style transfer) can be posed as “manip-
ulating” an input image into a corresponding output im-
age given a user-specified guiding signal. A holy-grail so-
lution towards generic image manipulation should be able
to efficiently alter an input image with any personalized
signals (even signals unseen during training), such as di-
verse paintings and arbitrary descriptive attributes. How-
ever, existing methods are either inefficient to simultane-
ously process multiple signals (let alone generalize to un-
seen signals), or unable to handle signals from other modal-
ities. In this paper, we make the first attempt to address the
zero-shot image manipulation task. We cast this problem
as manipulating an input image according to a parametric
model whose key parameters can be conditionally gener-
ated from any guiding signal (even unseen ones). To this
end, we propose the Zero-shot Manipulation Net (ZM-Net),
a fully-differentiable architecture that jointly optimizes an
image-transformation network (TNet) and a parameter net-
work (PNet). The PNet learns to generate key transforma-

tion parameters for the TNet given any guiding signal while
the TNet performs fast zero-shot image manipulation ac-
cording to both signal-dependent parameters from the PNet
and signal-invariant parameters from the TNet itself. Exten-
sive experiments show that our ZM-Net can perform high-
quality image manipulation conditioned on different forms
of guiding signals (e.g. style images and attributes) in real-
time (tens of milliseconds per image) even for unseen sig-
nals. Moreover, a large-scale style dataset with over 20,000
style images is also constructed to promote further research.

1. Introduction
Image manipulation, which aims to manipulate an in-

put image based on personalized guiding signals expressed
in diverse modalities (e.g. art paintings or text attributes),
has recently attracted ever-growing research interest and
derived various real-world applications, such as attribute-
driven image editing and artistic style transfer (e.g. Prisma).

An image manipulation model is usually deployed in
various devices, ranging from a GPU desktop to a mobile
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phone. For such a solution to be applicable, we argue that
it must meet three requirements: first, the model should be
zero-shot – it can immediately capture the intrinsic manip-
ulation principles conveyed by the guiding signal and apply
it on the target image, without retraining distinct models for
every user input. Further, to support the downstream mo-
bile applications, the inference process for a target image
should be really efficient (regardless of where it happens,
remote server or local mobile), so that the user can immedi-
ately obtain the desired output without waiting for seconds
to minutes. Third, a personalized guiding signal usually
comes in different forms – it could either be an artistic style
conveyed by an art painting (Fig 1 second row), or some
descriptive phrases typed in by the user (Fig 1 third row), or
even a speech instruction – therefore, it is preferable that the
model possesses the capability of receiving arbitrary guid-
ing signal in multiple modalities.

A variety of relevant approaches have been developed to-
wards the goal of real-time zero-shot image manipulation.
Existing approaches, such as [4, 19, 16, 3, 17, 25], mainly
focus on training transformation neural networks that cor-
responds to a small set of guiding signals, such as a few
art paintings. Among them, some CNN-based methods can
process images (nearly) in real-time [9]; however, each of
their networks is only tied to one specific guiding signal
(e.g. a single style image) and cannot generalize to unseen
types specified by users, unless retraining as many networks
as the number of guiding signals, which is both compu-
tationally and time prohibitive. Although some recent ap-
proaches [12] try to encode multiple styles within a single
network, they fail to perform zero-shot style transfer and
cannot process guiding signals either in real-time or from
distinct modalities (e.g. text attributes).

In this paper, we make the first attempt to explore the
real-time zero-shot image manipulation task, to our best
knowledge. This task is challenging since the model should
be able to exploit and transform diverse and complex pat-
terns from arbitrary guiding signals into transformation pa-
rameters, and perform the image manipulation in real-time.
To this end, we propose a novel Zero-shot Manipulation Net
(ZM-Net) that combines a parameter network (PNet) and
an image-transformation network (TNet) into an end-to-end
framework. The PNet is a generic model to produce a hi-
erarchy of key transformation parameters, while TNet takes
these generated parameters, combines with its own signal-
invariant parameters, to generate a new image. In the sense
of image style transfer, the PNet can embed any style image
into the hierarchical parameters, which are used by TNet to
transform the content image to a stylized image. We show
that ZM-Net can digest over 20,000 style images in a single
network rather than training one network per style as most
previous methods did. It can also be trained to process guid-
ing signals in other forms, such as descriptive attributes.

Moreover, with the ability of fast zero-shot manipulation,
the proposed ZM-Net can generate animation of a single
image in real-time (tens of milliseconds per image) even
though the model is trained on images rather than videos.

In summary, our main contributions are as follows: (1)
To our best knowledge, this is the first scalable solution for
the real-time zero-shot image manipulation task – the pro-
posed ZM-Net is able to digest over 20,000 style images
with a single model and perform zero-shot style transfer in
real-time. Interestingly, even in the zero-shot setting (no re-
training/finetuning), ZM-Net can still generate images with
quality comparable to previous methods that need to retrain
models for new style images. (2) Our ZM-Net can han-
dle more general image manipulation tasks (beyond style
transfer) with different forms of guiding signals (e.g. text
attributes). (3) Using a small set of 984 seed style images,
we construct a much larger dataset of 23,307 style images
with much more content diversity. Experiments show that
training on this dataset can dramatically decrease the testing
loss nearly by half.

2. Related Work
A lot of research efforts have been devoted to the image

manipulation task, among which the most common and ef-
ficient approach is to train a convolutional neural network
(CNN) which directly outputs a transformed image for the
input content image [4, 19, 16, 3, 17, 25, 15]. For exam-
ple, in [1, 24], a CNN is trained to perform colorization on
input images, and in [9, 22, 2, 12] to transform content im-
ages according to specific styles. Although the most recent
method by [9] can process images (nearly) in real-time, it
has to train a single network for each specific type of ma-
nipulation (e.g. a specific style image in style transfer) and
cannot generalize to other types of manipulation (new style
images or other forms of guiding signals) unless retraining
the model for every type, which usually takes several hours
and prevents them from being scaled to real-world applica-
tions. One of the most relevant works with ours in [12] tries
to encode multiple styles within a single network; however,
their model focuses on increasing the diversity of output im-
ages and are still unable to handle diverse and unseen guid-
ing signals from distinct modalities (e.g. text attributes).

On the other hand, some iterative approaches [8, 7, 6, 13]
have been proposed to manipulate image, either patch by
patch [8, 6], or by iteratively updating the input image with
hundreds of refinement [7] to obtain the transformed im-
age. Although these methods require no additional training
for each new guiding signal, the iterative evaluation process
usually takes tens of seconds even with GPU acceleration
[9], which might be impractical especially for online users.

3. Real-time Zero-shot Image Manipulation
In this section we first review the pipelines of current

state-of-the-art CNN-based methods, and discuss their lim-



Figure 2: An image transformation network with a fixed loss net-
work as described in [9]. For the style transfer task, the guid-
ing signal is a style image. Note that one transformation network
works for only one style.

itations in the zero-shot setting. Then, we present the Zero-
shot Manipulation Network (ZM-Net), a unified network
structure that jointly optimizes a parameter network (PNet)
and a image-transformation network (TNet).

3.1. Image Manipulation with CNNs

An image manipulation task [9, 7] can be formally de-
fined as: given a content image Xc ∈ RH×W×3 and a guid-
ing signal (e.g. a style image) Xs ∈ RH×W×3, output a
transformed image Y ∈ RH×W×3 such that Y is similar
to Xc in content and simultaneously similar to Xs in style.
Learning effective representations of content and styles are
hence equally essential to perform plausible image manip-
ulation. As in [7], using a fixed deep CNN φ(·), the feature
maps φl(X) ∈ RCl×Hl×Wl in the layer l can represent the
content of the image X, and the Gram matrix of φl(X),
denoted as G(φl(X)) ∈ RCl×Cl which is computed as

G(φl(X))c,c′ =

Hl∑
h=1

Wl∑
w=1

φl(X)c,h,wφl(X)c′,h,w (1)

can express the desired style patterns of the image X. Two
images are assessed to be similar in content or style only if
the difference between each corresponding representation
(i.e. φl(X) or G(φl(X))) has a small Frobenius norm.
Therefore, we can train a feedforward image transforma-
tion network Y = T(Xc), which is typically a deep CNN,
with the loss function:

L = λsLs(Y) + λcLc(Y),

Ls(Y) =
∑
l∈S

1

Z2
l

‖G(φl(Y))−G(φl(Xs))‖2F ,

Lc(Y) =
∑
l∈C

1

Zl
‖φl(Y)− φl(Xc)‖2F ,

(2)

where Ls(Y) is the style loss for the generated image Y,
Lc(Y) is the content loss, and λs, λc are hyperparameters.
S is the set of “style layers”, C is the set of “content lay-
ers”, and Zl is the total number of neurons in layer l [9].
After the transformation network T(·) is trained, given a
new content image X′c, we can generate the stylized im-
age Y = T(X′c) without using the loss network. Figure
2 shows an overview of this model. Note that the compu-
tation of φl(·) is defined by a fixed loss network (e.g. a

16-layer VGG network [21] pretrained on ImageNet [20])
while the transformation network T(·) is learned given a
set of training content images and a style image. Although
performing image manipulation with a single feedforward
pass of CNN is usually three orders of magnitude faster than
the optimization-based methods in [7], this approach [9] is
largely restricted by that one single transformation network
is tied to one specific style image, meaning that N sepa-
rate networks have to be trained to enable transfer from N
style images. The disadvantages are obvious: (1) it is time-
consuming to train N separate networks; (2) it needs much
more memory to storeN networks, which is impractical for
mobile devices; (3) it is not scalable and cannot generalize
to new styles (a new model needs to be trained for very new
incoming styles).
3.2. ZM-Net

To address the aforementioned problems and enable
real-time zero-shot image manipulation, we propose a
general architecture, ZM-Net, that combines an image-
transformation network (TNet) and a parameter network
(PNet). Different from prior works that only adopt a TNet
to transform images, we train an extra parameter network
(PNet) to produce key parameters of the TNet conditioned
on the guiding signals (e.g. style images). As parameters
are generated on the fly given arbitrary guiding signals, our
ZM-Net avoids training and storing many different network
parameters for distinct signals like prior works. Moreover,
as the PNet learns to embed the guiding signal into a shared
space, our ZM-Net is able to perform zero-shot image ma-
nipulation given unseen guiding signals.

Here we generalize the notion of style images (in style
transfer) to guiding signals (in general image manipulation
tasks), i.e. the input Xs can be any guiding signals beyond
style images, for example, word embeddings that express
the descriptive attributes in order to impose specific seman-
tics on the input image Xc (Section 4) or color histograms
(a vector representing the pixel color distribution) to guide
the colorization of Xc. In the following, we first present
the design of a TNet with our proposed dynamic instance
normalization based on [23], then introduce a PNet and its
variants including the serial PNet and the parallel PNet.

3.2.1 TNet with Dynamic Instance Normalization
To enable zero-shot image manipulation, we must design a
principled way to dynamically specify the network parame-
ters of TNet during testing, so that it can handle unseen sig-
nals. A naive way would be to directly generate the filters of
the TNet, based on feature maps from the PNet condition-
ing on the guiding signal Xs. However, in practice, each
layer of TNet typically has over 100,000 parameters (e.g.
128×128×3×3) while feature maps in each layer of PNet
usually have about 1,000,000 entries (e.g. 128×80×80). It
is thus difficult to efficiently transform a high dimensional



Figure 3: An overview of the serial architecture (left) and the parallel architecture (right) of our ZM-Net. Details of the loss network are
the same as Figure 2 and omitted here.

vector to another one. Inspired by [2], we resort to dynami-
cally augmenting the instance normalization (performed af-
ter each convolutional layer in TNet) [23] with the produced
scaling and shifting parameters γ(Xs) and β(Xs) by PNet.
Here the scaling and shifting factors γ(Xs) and β(Xs) are
treated as key parameters in each layer of TNet. Formally,
let x ∈ RCl×Hl×Wl be a tensor before instance normal-
ization. xijk denotes the ijk-th element, where i indexes
the feature maps and j, k span spatial dimensions. The out-
put y ∈ RCl×Hl×Wl of our dynamic instance normalization
(DIN) is thus computed as (the layer index l is omitted):

yijk =
xijk − µi√
σ2
i + ε

γi(Xs) + βi(Xs), (3)

µi =
1

HW

H∑
j=1

W∑
k=1

xijk,

σ2
i =

1

HW

H∑
j=1

W∑
k=1

(xijk − µi)2,

where µi is the average value in feature map i and σ2
i is

the corresponding variance. γi(Xs) is the i-th element of
an Ci-dimensional vector γ(Xs) generated by the PNet and
similarly for βi(Xs). Here if γi(Xs) = 1 and βi(Xs) = 0,
DIN degenerates to the vanilla instance normalization [23].
If γi(Xs) = γi and βi(Xs) = βi, they become directly
learnable parameters irrelevant to the PNet. DIN then de-
generates to the conditional instance normalization (CIN)
in [2]. In both cases, the model loses its ability of zero-shot
learning and therefore cannot generalize to unseen signals.

The PNet that aims to generate γ(Xs) and β(Xs) can
be a CNN, a multilayer perceptron (MLP), or even a recur-
rent neural network (RNN). We use a CNN and an MLP
as the PNet in Section 4 to demonstrate the generality of
our proposed ZM-Net. Since content images and guiding
signals are inherently different, the input pair for image ma-
nipulation is non-exchangeable, making this problem much
more difficult than typical problems such as image match-
ing with an exchangeable input image pair. Due to the non-
exchangeability, the connection between the TNet and the
PNet should be asymmetric.

3.2.2 Parameter Network (PNet)

To drive the TNet with dynamic instance normalization, a
PNet can have either a serial or a parallel architecture.

Serial PNet. In a serial PNet, one can use a deep CNN,
with a structure similar to the TNet, to generate γ(l)(Xs)

and β(l)(Xs) in layer l. Figure 3 (left) shows an overview
of this serial architecture. In the serial PNet, γ(l)(Xs) and
β(l)(Xs) of Equation (3) (yellow and blue boxes in Figure
3) are conditioned on the feature maps, denoted as ψl(Xs),
in layer l of the PNet. Specifically,

γ(l)(Xs) = ψl(Xs)W
(l)
γ + b(l)

γ , (4)

β(l)(Xs) = ψl(Xs)W
(l)
β + b

(l)
β . (5)

Here if the input Xs is an image, ψl(Xs) can be the
output of convolutional layers in the TNet. If the input Xs

is a word embedding (a vector), ψl(Xs) can be the output
of fully connected layers. W

(l)
γ , b(l)

γ , W(l)
β , and b

(l)
β are

parameters to learn.
Note that in Equation (3), yijk with different j and k

share the same βi(Xs), this design significantly reduces the
number of parameters and increases the generalization of
the model. Interestingly, if we let γi(Xs) = 1 and replace
βi(Xs) with βijk(Xs), which is computed as the output
of a convolutional layer with input ψl−1(Xs), followed by
the vanilla instance normalization, Equation (3) is equiv-
alent to concatenating φl−1(Xc) and ψl−1(Xs) followed
by a convolutional layer and the vanilla instance normaliza-
tion, as used in [12]. Our preliminary experiments show that
although structures similar to [12] has sufficient model ca-
pacity to perform image manipulation given guiding signals
(e.g. style images) in the training set, it generalizes poorly
to unseen guiding signals and cannot be used for zero-shot
image manipulation.

Parallel PNet. Alternatively, one can use separate shal-
low networks (either fully connected or convolutional ones)
to generate ψl(Xs) in layer l, which is then used to com-
pute γ(l)(Xs) and β(l)(Xs) according to Equation (4) and
(5). Figure 3 (right) shows the architecture of this parallel
PNet. Different from the serial PNet where higher levels of
γ(l)(Xs) and β(l)(Xs) are generated from higher levels of
ψl(Xs), here the transformation from Xs to γ(l)(Xs) and



Figure 4: Results (from Column 3 to 6) of OST [7], FST [9], CIN [2], and a 10-style ZM-Net. Column 1 is the content image and Column
2 contains 2 of the 10 style images used during training. Golden Gate Bridge photograph by Rich Niewiroski Jr.

Figure 5: Results of a 20,938-style ZM-Net. Column 1 is the content image and Column 2 to 6 are randomly selected training style
images and corresponding generated images.

β(l)(Xs) follows a shallow and parallel structure. Our ex-
periments (in Section 4.2) show that this design would limit
the effectiveness of the PNet and slightly decrease the qual-
ity of the generated TNet and consequently the generated
images Y. Therefore, in Section 4 we use the serial PNet
unless otherwise specified.

Training and Test. ZM-Net can be trained in an end-to-
end manner with the supervision from the loss network, as
shown in Figure 3. During the testing phase, the content im-
age Xc and the guiding signal Xs are fed into the TNet and
the PNet, respectively, generating the transformed image Y.
Note that the loss network is irrelevant during testing.

4. Experiments

In this section, we first demonstrate our ZM-Net’s ca-
pacity of digesting over 20,000 style images in one single
network (with a TNet and a PNet), followed by experiments
showing the model’s ability of zero-shot learning on im-
age manipulation tasks (being able to generalize to unseen
guiding signals). As another set of experiments, we also try
using simplified word embeddings expressing the descrip-
tive attributes rather than style images as guiding signals to
embed specific semantics in content images. We show that
with the ability of zero-shot learning and fast image manip-
ulation, our model can generate animation of a single image
in real-time even though the model is image-based.

Table 1: Comparison of optimization-based style transfer [7], fast
style transfer [9, 22, 11, 2], and our ZM-Net. Note that ZM-Net’s
time cost per image is up to 0.038s for the first time it processes a
new style, and drops to 0.015s after that.

[7] [9, 22, 11, 2] ZM-Net
Speed 15.86s 0.015s 0.015s∼0.038s
Zero-shot X X X

4.1. Fast Zero-shot Style Transfer

As shown in Table 1, current methods for fast style trans-
fer [9, 22, 11] need to train different networks for differ-
ent styles, costing too much time (several hours for each
networks) and memory. Besides, it is also impossible for
these methods to generalize to unseen styles (zero-shot
style transfer). On the other hand, although the original
optimization-based style transfer (OST) method [7] is ca-
pable of zero-shot transfer, it is several orders of magnitude
slower than [9, 22, 11] when generating stylized images.
Our ZM-Net is able to get the best of both worlds, perform-
ing both fast and zero-shot style transfer.

Datasets. We use the MS-COCO dataset [14] as our
content images. In order for ZM-Net to generalize well
to unseen styles, the style images in the training set need
sufficient diversity to prevent the model from overfitting to
just a few styles. Unfortunately, unlike photos that can be
massively produced, art work such as paintings (especially
famous ones) is rare and difficult to collect. To address
this problem, we use the 984 impressionism paintings in



the dataset Pandora [5] as seed style images to produce a
larger dataset of 23,307 style images. Specifically, we first
split the 984 images into 784 training images, 100 valida-
tion images (for choosing hyperparameters), and 100 test-
ing images. We then randomly select a content image and
an impressionism painting from one of the three sets as in-
put to OST [7], producing a new style image with a similar
style but different content. Note that different from tradi-
tional dataset expansion, our expansion process can intro-
duce much more content diversity to the dataset and hence
prevent the training process from overfitting the content of
the style images. Our experiments show that using the ex-
panded dataset rather than the original one can cut the test-
ing loss L nearly by half (from 58342.2 to 31860.4).

Experimental Settings. For the baselines, OST [7], fast
style transfer (FST) [9], and CIN [2], we use the same net-
work structures and hyperparameters mentioned in the pa-
pers. For our ZM-Net, we follow the network structure from
[9] (with residual connections) for both the TNet and the
PNet, except for the part connecting to DIN. We use a se-
rial PNet for the style transfer task. As in [9, 2], we use
the VGG-16 loss network with the same content and style
layers. All models are trained with a minibatch size of 4
for 40,000 iterations using Adam [10] (for efficiency, con-
tent images in the same minibatch share the same style im-
age). As an exception, we train the 20,938-style ZM-Net for
160,000 iterations with an initial learning rate of 1 × 10−3

and decay it by 0.1 every 40,000 iterations.
Model Capacity. To show that ZM-Net has enough

model capacity to digest multiple styles with one single net-
work, we train ZM-Net with up to 20,938 style images and
evaluate its ability to stylize new content images with style
images in the training set. Figure 4 shows the results of a
10-style ZM-Net (the last column), OST [7], FST [9], and
CIN [2] (see the supplementary material for more results).
Note that both FST and CIN need to train different networks
for different style images1 while ZM-Net can be simultane-
ously trained on multiple styles with a single network. As
we can see, ZM-Net can achieve comparable performance
with one single network. Similarly, Figure 5 shows the re-
sults of a 20,938-style ZM-Net. Surprisingly, ZM-Net has
no problem digesting as many as 20,938 with only one net-
work either. Quantitatively, the final training loss (average
over the last 100 iterations) of the 20,938-style ZM-Net is
very close to that of CIN [2] (157382.7 versus 148374.3),
which again demonstrates ZM-Net’s sufficient model ca-
pacity.

Fast Zero-shot Style Transfer. Note that in style trans-
fer, there are two levels of generalization involved: (1) gen-
eralization to new content images, which is achieved by

1Although CIN can share parameters of convolutional layers across dif-
ferent styles, the other parts of the parameters still need to be trained sepa-
rately for different styles.

[2, 22, 9], and (2) generalization to not only new content
images but also new style images. Since the second level
involves style transfer with style images (guiding signals)
unseen during training, we call this zero-shot style transfer.
Figure 6 shows the results of fast zero-shot style transfer
using our 10-style ZM-Net, 20,938-style ZM-Net, and FST
[9] (see the supplementary material for more results). As we
can see, the 10-style ZM-Net severely overfits the 10 style
images in the training set and generalizes poorly to unseen
styles. The 20,938-style ZM-Net, with the help of enough
diversity in the training style images, can perform satisfac-
tory style transfer even for unseen styles, while models like
FST [2, 22, 9] are tied to specific styles and fail to generalize
to unseen styles.

Note that both the TNet and the PNet in ZM-Net have 10
layers (5 of them are residual blocks with 2 convolutional
layers each), and the PNet connects to the TNet through
the first 9 layers with the DIN operations in Equation (3).
To investigate the function of DIN in different layers, we
turn off the DIN operations in some layers (set γi = 1 and
βi = 0) and perform zero-shot style transfer using ZM-
Net. As shown in Figure 7, DIN in layer 1 ∼ 3 focuses on
generating content details (e.g., edges), DIN in layer 4 ∼ 6
focuses on roughly adjusting colors, and DIN in layer 7 ∼ 9
focuses transfer texture-related features.

[2] proposes CIN to share convolutional layers across
different styles and finetune only the scaling/shifting factors
of the instance normalization, γi and βi, for a new style.
Figure 9 shows the style transfer for an unseen style image
after finetuning CIN [2] and ZM-Net for 1 ∼ 40 iterations.
As we can see, with the ability of zero-shot learning, ZM-
Net can perform much better than CIN even without finetun-
ing for a new style. Figure 8 shows the training and testing
loss (sum of content and style loss) of training FST (train a
transformation network from scratch), finetuning CIN, and
finetuning our ZM-Net. We can conclude that, (1) finetun-
ing CIN has much lower initial training/testing loss than
FST, and finetuning ZM-Net can do even better; (2) ZM-
Net converges faster and to lower training/testing loss.

4.2. Word Embeddings as Guiding Signals

Besides style transfer, which uses style images as guid-
ing signals, we also try ZM-Net with word embeddings as
input to embed specific semantics into images. For exam-
ple, taking the word embedding of the word ‘night’ will
transform a photo taken during daytime to a photo with a
night view. In this setting, if we train ZM-Net with only
the words ‘noon’ and ‘night’, a successful zero-shot manip-
ulation would take the word embeding of ‘morning’ or ‘af-
ternoon’ and transform the content image taken at noon to
an image taken in the morning the in the afternoon (though
‘morning’ and ‘afternoon’ never appear in the training set).

To perform such tasks, we design a ZM-Net with a deep



Figure 6: Fast zero-shot style transfer results (from Row 2 to 4) using our 10-style ZM-Net, 20,938-style ZM-Net, and FST [9]. Row 1
shows the content image and the style images.

Figure 7: Zero-shot style transfer using a 20,938-style ZM-Net with DIN in some layers turned on. Column 1: Style image. Column 2:
Content images. Column 3: DIN in all layers is off. Column 4 to 6: DIN in layer 1 ∼ 3, 4 ∼ 6, and 7 ∼ 9 is on, respectively. Column 7:
DIN in all layers is on.
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Figure 8: Training loss for all iterations (left), training loss for
the first 100 iterations (middle), and testing loss for all iterations
(right) of FST, CIN, and our ZM-Net. Testing loss is computed
every 1,000 iterations.
convolutional TNet identical to the one used for style trans-
fer and a deep fully connected PNet with residual con-
nections (see the supplementary material for details on the
structure). To facilitate analysis and avoid overfitting, we
compressed the pretrained 50-dimensional word embed-
dings from [18] to 2-dimensional vectors.

We crawl 30 images with the tag ‘noon’ and 30 with

the tag ‘night’ as training images. Note that different from
the ZM-Net for style transfer where the same style image
is used both as input to the PNet and as input to the fixed
loss network (as shown in Figure 3), here we use word em-
beddings as input to the PNet and use the corresponding
‘noon/night’ images as input to the loss network. In each it-
eration, we randomly select the word embeddings of ‘noon’
or ‘night’ as the input guiding signal and use a correspond-
ing image to feed into the loss network. Different from
style transfer, even for the same input guiding signal, dif-
ferent ‘noon/night’ images are fed into the loss network. In
this case, ZM-Net is actually extracting the common pat-
terns/semantics from ‘noon’ or ‘night’ images instead of
simply learning to perform style transfer.

Row 2 of Figure 10 shows the zero-shot image manipula-



Figure 9: Column 1: The content image and style image. Column 2 to 7: Style transfer for the unseen style image after finetuning
ZM-Net (Row 1) and CIN [2] (Row 2) for 1, 10, 20, 30, 40, and 50 iterations. The CIN model is first trained on another style image before
finetuning.

Figure 10: Zero-shot image manipulation with word embeddings as guiding signals compared to simply changing image illumination
(Row 1). Row 2 shows the 6 images corresponding to compressed word embeddings of ‘noon’, 0.5‘noon’ + 0.5‘afternoon’, ‘afternoon’,
‘morning’, 0.5‘morning’ + 0.5‘night’, and ‘night’ when a serial PNet is used. Row 3 shows the results when a parallel PNet is used.
Column 1 shows the content image and the compressed word embeddings.

tion with a serial PNet in ZM-Net. We train the model with
word embeddings of ‘noon’ and ‘night’ and use word em-
beddings of ‘morning’ and ‘afternoon’ (which never appear
during training) as guiding signals during testing. As we
can see, the transformed images gradually change from day-
time (noon) views (with bright sky and buildings) to night-
time views (with dark sky and buildings with lights on),
with ‘morning/afternoon views’ in between. Note that with
ZM-Net’s ability of fast zero-shot manipulation, it can gen-
erate animation of a single image in real-time even though
the model is image-based (see the demonstration in the sup-
plementary material). As a baseline, Row 1 of Figure 10
shows the results of simple illumination change. We can see
that ZM-Net automatically transfer the lighting effect (lights
in the buildings) to the content image while simple illumina-
tion fails to do so. Besides the serial PNet, we also perform
the same task with a parallel PNet and report the results in
Row 3 of Figure 10. We can see that comparing to results

using an serial PNet, the parallel PNet produces much more
redundant yellow pixels surrounding the buildings, which is
not reasonable for a daytime photo. The comparison shows
that the serial PNet with its deep structure tends to perform
higher-quality image manipulation than the parallel PNet.

5. Conclusion
In this paper we present ZM-Net, a general network

architecture with dynamic instance normalization, to per-
form real-time zero-shot image manipulation. Experiments
show that ZM-Net produces high-quality transformed im-
ages with different modalities of guiding signals (e.g. style
images and text attributes) and can generalize to unseen
guiding signals. ZM-Net can even produce real-time ani-
mation for a single image even though the model is trained
on images. Besides, we construct the largest dataset of
23,307 style images to provide much more content diver-
sity and reduce the testing loss nearly by half.
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